Step |
Hyp |
Ref |
Expression |
1 |
|
elxr |
⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) |
2 |
|
elxr |
⊢ ( 𝐶 ∈ ℝ* ↔ ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) ) |
3 |
|
elxr |
⊢ ( 𝐵 ∈ ℝ* ↔ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) |
4 |
|
lttr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
5 |
4
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
6 |
5
|
an32s |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
7 |
|
rexr |
⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ ℝ* ) |
8 |
|
pnfnlt |
⊢ ( 𝐶 ∈ ℝ* → ¬ +∞ < 𝐶 ) |
9 |
7 8
|
syl |
⊢ ( 𝐶 ∈ ℝ → ¬ +∞ < 𝐶 ) |
10 |
9
|
adantr |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 = +∞ ) → ¬ +∞ < 𝐶 ) |
11 |
|
breq1 |
⊢ ( 𝐵 = +∞ → ( 𝐵 < 𝐶 ↔ +∞ < 𝐶 ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 = +∞ ) → ( 𝐵 < 𝐶 ↔ +∞ < 𝐶 ) ) |
13 |
10 12
|
mtbird |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 = +∞ ) → ¬ 𝐵 < 𝐶 ) |
14 |
13
|
pm2.21d |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 = +∞ ) → ( 𝐵 < 𝐶 → 𝐴 < 𝐶 ) ) |
15 |
14
|
adantll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 = +∞ ) → ( 𝐵 < 𝐶 → 𝐴 < 𝐶 ) ) |
16 |
15
|
adantld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 = +∞ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
17 |
|
rexr |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) |
18 |
|
nltmnf |
⊢ ( 𝐴 ∈ ℝ* → ¬ 𝐴 < -∞ ) |
19 |
17 18
|
syl |
⊢ ( 𝐴 ∈ ℝ → ¬ 𝐴 < -∞ ) |
20 |
19
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → ¬ 𝐴 < -∞ ) |
21 |
|
breq2 |
⊢ ( 𝐵 = -∞ → ( 𝐴 < 𝐵 ↔ 𝐴 < -∞ ) ) |
22 |
21
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → ( 𝐴 < 𝐵 ↔ 𝐴 < -∞ ) ) |
23 |
20 22
|
mtbird |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → ¬ 𝐴 < 𝐵 ) |
24 |
23
|
pm2.21d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → ( 𝐴 < 𝐵 → 𝐴 < 𝐶 ) ) |
25 |
24
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 = -∞ ) → ( 𝐴 < 𝐵 → 𝐴 < 𝐶 ) ) |
26 |
25
|
adantrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 = -∞ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
27 |
6 16 26
|
3jaodan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
28 |
3 27
|
sylan2b |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
29 |
28
|
an32s |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
30 |
|
ltpnf |
⊢ ( 𝐴 ∈ ℝ → 𝐴 < +∞ ) |
31 |
30
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 = +∞ ) → 𝐴 < +∞ ) |
32 |
|
breq2 |
⊢ ( 𝐶 = +∞ → ( 𝐴 < 𝐶 ↔ 𝐴 < +∞ ) ) |
33 |
32
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 = +∞ ) → ( 𝐴 < 𝐶 ↔ 𝐴 < +∞ ) ) |
34 |
31 33
|
mpbird |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 = +∞ ) → 𝐴 < 𝐶 ) |
35 |
34
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 = +∞ ) → 𝐴 < 𝐶 ) |
36 |
35
|
a1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 = +∞ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
37 |
|
nltmnf |
⊢ ( 𝐵 ∈ ℝ* → ¬ 𝐵 < -∞ ) |
38 |
37
|
adantr |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 = -∞ ) → ¬ 𝐵 < -∞ ) |
39 |
|
breq2 |
⊢ ( 𝐶 = -∞ → ( 𝐵 < 𝐶 ↔ 𝐵 < -∞ ) ) |
40 |
39
|
adantl |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 = -∞ ) → ( 𝐵 < 𝐶 ↔ 𝐵 < -∞ ) ) |
41 |
38 40
|
mtbird |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 = -∞ ) → ¬ 𝐵 < 𝐶 ) |
42 |
41
|
pm2.21d |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 = -∞ ) → ( 𝐵 < 𝐶 → 𝐴 < 𝐶 ) ) |
43 |
42
|
adantld |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 = -∞ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
44 |
43
|
adantll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 = -∞ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
45 |
29 36 44
|
3jaodan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
46 |
45
|
anasss |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) ) ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
47 |
|
pnfnlt |
⊢ ( 𝐵 ∈ ℝ* → ¬ +∞ < 𝐵 ) |
48 |
47
|
adantl |
⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ¬ +∞ < 𝐵 ) |
49 |
|
breq1 |
⊢ ( 𝐴 = +∞ → ( 𝐴 < 𝐵 ↔ +∞ < 𝐵 ) ) |
50 |
49
|
adantr |
⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 ↔ +∞ < 𝐵 ) ) |
51 |
48 50
|
mtbird |
⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ¬ 𝐴 < 𝐵 ) |
52 |
51
|
pm2.21d |
⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → 𝐴 < 𝐶 ) ) |
53 |
52
|
adantrd |
⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
54 |
53
|
adantrr |
⊢ ( ( 𝐴 = +∞ ∧ ( 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) ) ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
55 |
|
mnflt |
⊢ ( 𝐶 ∈ ℝ → -∞ < 𝐶 ) |
56 |
55
|
adantl |
⊢ ( ( 𝐴 = -∞ ∧ 𝐶 ∈ ℝ ) → -∞ < 𝐶 ) |
57 |
|
breq1 |
⊢ ( 𝐴 = -∞ → ( 𝐴 < 𝐶 ↔ -∞ < 𝐶 ) ) |
58 |
57
|
adantr |
⊢ ( ( 𝐴 = -∞ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < 𝐶 ↔ -∞ < 𝐶 ) ) |
59 |
56 58
|
mpbird |
⊢ ( ( 𝐴 = -∞ ∧ 𝐶 ∈ ℝ ) → 𝐴 < 𝐶 ) |
60 |
59
|
a1d |
⊢ ( ( 𝐴 = -∞ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
61 |
60
|
adantlr |
⊢ ( ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
62 |
|
mnfltpnf |
⊢ -∞ < +∞ |
63 |
|
breq12 |
⊢ ( ( 𝐴 = -∞ ∧ 𝐶 = +∞ ) → ( 𝐴 < 𝐶 ↔ -∞ < +∞ ) ) |
64 |
62 63
|
mpbiri |
⊢ ( ( 𝐴 = -∞ ∧ 𝐶 = +∞ ) → 𝐴 < 𝐶 ) |
65 |
64
|
a1d |
⊢ ( ( 𝐴 = -∞ ∧ 𝐶 = +∞ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
66 |
65
|
adantlr |
⊢ ( ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 = +∞ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
67 |
43
|
adantll |
⊢ ( ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 = -∞ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
68 |
61 66 67
|
3jaodan |
⊢ ( ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
69 |
68
|
anasss |
⊢ ( ( 𝐴 = -∞ ∧ ( 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) ) ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
70 |
46 54 69
|
3jaoian |
⊢ ( ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ∧ ( 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) ) ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
71 |
70
|
3impb |
⊢ ( ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ∧ 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
72 |
2 71
|
syl3an3b |
⊢ ( ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
73 |
1 72
|
syl3an1b |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |