Step |
Hyp |
Ref |
Expression |
1 |
|
xrleloe |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 ≤ 𝐶 ↔ ( 𝐵 < 𝐶 ∨ 𝐵 = 𝐶 ) ) ) |
2 |
1
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 ≤ 𝐶 ↔ ( 𝐵 < 𝐶 ∨ 𝐵 = 𝐶 ) ) ) |
3 |
|
xrlttr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
4 |
3
|
expcomd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 < 𝐶 → ( 𝐴 < 𝐵 → 𝐴 < 𝐶 ) ) ) |
5 |
|
breq2 |
⊢ ( 𝐵 = 𝐶 → ( 𝐴 < 𝐵 ↔ 𝐴 < 𝐶 ) ) |
6 |
5
|
biimpd |
⊢ ( 𝐵 = 𝐶 → ( 𝐴 < 𝐵 → 𝐴 < 𝐶 ) ) |
7 |
6
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 = 𝐶 → ( 𝐴 < 𝐵 → 𝐴 < 𝐶 ) ) ) |
8 |
4 7
|
jaod |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐵 < 𝐶 ∨ 𝐵 = 𝐶 ) → ( 𝐴 < 𝐵 → 𝐴 < 𝐶 ) ) ) |
9 |
2 8
|
sylbid |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 ≤ 𝐶 → ( 𝐴 < 𝐵 → 𝐴 < 𝐶 ) ) ) |
10 |
9
|
impcomd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶 ) → 𝐴 < 𝐶 ) ) |