Metamath Proof Explorer


Theorem xrltletr

Description: Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006)

Ref Expression
Assertion xrltletr ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( ( 𝐴 < 𝐵𝐵𝐶 ) → 𝐴 < 𝐶 ) )

Proof

Step Hyp Ref Expression
1 xrleloe ( ( 𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( 𝐵𝐶 ↔ ( 𝐵 < 𝐶𝐵 = 𝐶 ) ) )
2 1 3adant1 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( 𝐵𝐶 ↔ ( 𝐵 < 𝐶𝐵 = 𝐶 ) ) )
3 xrlttr ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( ( 𝐴 < 𝐵𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) )
4 3 expcomd ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( 𝐵 < 𝐶 → ( 𝐴 < 𝐵𝐴 < 𝐶 ) ) )
5 breq2 ( 𝐵 = 𝐶 → ( 𝐴 < 𝐵𝐴 < 𝐶 ) )
6 5 biimpd ( 𝐵 = 𝐶 → ( 𝐴 < 𝐵𝐴 < 𝐶 ) )
7 6 a1i ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( 𝐵 = 𝐶 → ( 𝐴 < 𝐵𝐴 < 𝐶 ) ) )
8 4 7 jaod ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( ( 𝐵 < 𝐶𝐵 = 𝐶 ) → ( 𝐴 < 𝐵𝐴 < 𝐶 ) ) )
9 2 8 sylbid ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( 𝐵𝐶 → ( 𝐴 < 𝐵𝐴 < 𝐶 ) ) )
10 9 impcomd ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( ( 𝐴 < 𝐵𝐵𝐶 ) → 𝐴 < 𝐶 ) )