Step |
Hyp |
Ref |
Expression |
1 |
|
xrleloe |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 ≤ 𝐶 ↔ ( 𝐵 < 𝐶 ∨ 𝐵 = 𝐶 ) ) ) |
2 |
1
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 ≤ 𝐶 ↔ ( 𝐵 < 𝐶 ∨ 𝐵 = 𝐶 ) ) ) |
3 |
2
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐵 ≤ 𝐶 ↔ ( 𝐵 < 𝐶 ∨ 𝐵 = 𝐶 ) ) ) |
4 |
|
xrlelttr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
5 |
|
xrltle |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 < 𝐶 → 𝐴 ≤ 𝐶 ) ) |
6 |
5
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 < 𝐶 → 𝐴 ≤ 𝐶 ) ) |
7 |
4 6
|
syld |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 ≤ 𝐶 ) ) |
8 |
7
|
expdimp |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐵 < 𝐶 → 𝐴 ≤ 𝐶 ) ) |
9 |
|
breq2 |
⊢ ( 𝐵 = 𝐶 → ( 𝐴 ≤ 𝐵 ↔ 𝐴 ≤ 𝐶 ) ) |
10 |
9
|
biimpcd |
⊢ ( 𝐴 ≤ 𝐵 → ( 𝐵 = 𝐶 → 𝐴 ≤ 𝐶 ) ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐵 = 𝐶 → 𝐴 ≤ 𝐶 ) ) |
12 |
8 11
|
jaod |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐵 < 𝐶 ∨ 𝐵 = 𝐶 ) → 𝐴 ≤ 𝐶 ) ) |
13 |
3 12
|
sylbid |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐵 ≤ 𝐶 → 𝐴 ≤ 𝐶 ) ) |
14 |
13
|
expimpd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) → 𝐴 ≤ 𝐶 ) ) |