Metamath Proof Explorer


Theorem xrletr

Description: Transitive law for ordering on extended reals. (Contributed by NM, 9-Feb-2006)

Ref Expression
Assertion xrletr A*B*C*ABBCAC

Proof

Step Hyp Ref Expression
1 xrleloe B*C*BCB<CB=C
2 1 3adant1 A*B*C*BCB<CB=C
3 2 adantr A*B*C*ABBCB<CB=C
4 xrlelttr A*B*C*ABB<CA<C
5 xrltle A*C*A<CAC
6 5 3adant2 A*B*C*A<CAC
7 4 6 syld A*B*C*ABB<CAC
8 7 expdimp A*B*C*ABB<CAC
9 breq2 B=CABAC
10 9 biimpcd ABB=CAC
11 10 adantl A*B*C*ABB=CAC
12 8 11 jaod A*B*C*ABB<CB=CAC
13 3 12 sylbid A*B*C*ABBCAC
14 13 expimpd A*B*C*ABBCAC