| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrge0tsms2.g |
|- G = ( RR*s |`s ( 0 [,] +oo ) ) |
| 2 |
|
simpl |
|- ( ( A e. V /\ F : A --> ( 0 [,] +oo ) ) -> A e. V ) |
| 3 |
|
simpr |
|- ( ( A e. V /\ F : A --> ( 0 [,] +oo ) ) -> F : A --> ( 0 [,] +oo ) ) |
| 4 |
|
eqid |
|- sup ( ran ( x e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) = sup ( ran ( x e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) |
| 5 |
1 2 3 4
|
xrge0tsms |
|- ( ( A e. V /\ F : A --> ( 0 [,] +oo ) ) -> ( G tsums F ) = { sup ( ran ( x e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) } ) |
| 6 |
|
xrltso |
|- < Or RR* |
| 7 |
6
|
supex |
|- sup ( ran ( x e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) e. _V |
| 8 |
7
|
ensn1 |
|- { sup ( ran ( x e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) } ~~ 1o |
| 9 |
5 8
|
eqbrtrdi |
|- ( ( A e. V /\ F : A --> ( 0 [,] +oo ) ) -> ( G tsums F ) ~~ 1o ) |