| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrge0tsmseq.g |
|- G = ( RR*s |`s ( 0 [,] +oo ) ) |
| 2 |
|
xrge0tsmseq.a |
|- ( ph -> A e. V ) |
| 3 |
|
xrge0tsmseq.f |
|- ( ph -> F : A --> ( 0 [,] +oo ) ) |
| 4 |
1
|
xrge0tsms2 |
|- ( ( A e. V /\ F : A --> ( 0 [,] +oo ) ) -> ( G tsums F ) ~~ 1o ) |
| 5 |
2 3 4
|
syl2anc |
|- ( ph -> ( G tsums F ) ~~ 1o ) |
| 6 |
|
en1b |
|- ( ( G tsums F ) ~~ 1o <-> ( G tsums F ) = { U. ( G tsums F ) } ) |
| 7 |
5 6
|
sylib |
|- ( ph -> ( G tsums F ) = { U. ( G tsums F ) } ) |
| 8 |
7
|
eleq2d |
|- ( ph -> ( C e. ( G tsums F ) <-> C e. { U. ( G tsums F ) } ) ) |
| 9 |
|
ovex |
|- ( G tsums F ) e. _V |
| 10 |
9
|
uniex |
|- U. ( G tsums F ) e. _V |
| 11 |
|
eleq1 |
|- ( C = U. ( G tsums F ) -> ( C e. _V <-> U. ( G tsums F ) e. _V ) ) |
| 12 |
10 11
|
mpbiri |
|- ( C = U. ( G tsums F ) -> C e. _V ) |
| 13 |
|
elsng |
|- ( C e. _V -> ( C e. { U. ( G tsums F ) } <-> C = U. ( G tsums F ) ) ) |
| 14 |
12 13
|
syl |
|- ( C = U. ( G tsums F ) -> ( C e. { U. ( G tsums F ) } <-> C = U. ( G tsums F ) ) ) |
| 15 |
14
|
ibir |
|- ( C = U. ( G tsums F ) -> C e. { U. ( G tsums F ) } ) |
| 16 |
|
elsni |
|- ( C e. { U. ( G tsums F ) } -> C = U. ( G tsums F ) ) |
| 17 |
15 16
|
impbii |
|- ( C = U. ( G tsums F ) <-> C e. { U. ( G tsums F ) } ) |
| 18 |
8 17
|
bitr4di |
|- ( ph -> ( C e. ( G tsums F ) <-> C = U. ( G tsums F ) ) ) |