Metamath Proof Explorer


Theorem xrge0tsmsbi

Description: Any limit of a finite or infinite sum in the nonnegative extended reals is the union of the sets limits, since this set is a singleton. (Contributed by Thierry Arnoux, 23-Jun-2017)

Ref Expression
Hypotheses xrge0tsmseq.g
|- G = ( RR*s |`s ( 0 [,] +oo ) )
xrge0tsmseq.a
|- ( ph -> A e. V )
xrge0tsmseq.f
|- ( ph -> F : A --> ( 0 [,] +oo ) )
Assertion xrge0tsmsbi
|- ( ph -> ( C e. ( G tsums F ) <-> C = U. ( G tsums F ) ) )

Proof

Step Hyp Ref Expression
1 xrge0tsmseq.g
 |-  G = ( RR*s |`s ( 0 [,] +oo ) )
2 xrge0tsmseq.a
 |-  ( ph -> A e. V )
3 xrge0tsmseq.f
 |-  ( ph -> F : A --> ( 0 [,] +oo ) )
4 1 xrge0tsms2
 |-  ( ( A e. V /\ F : A --> ( 0 [,] +oo ) ) -> ( G tsums F ) ~~ 1o )
5 2 3 4 syl2anc
 |-  ( ph -> ( G tsums F ) ~~ 1o )
6 en1b
 |-  ( ( G tsums F ) ~~ 1o <-> ( G tsums F ) = { U. ( G tsums F ) } )
7 5 6 sylib
 |-  ( ph -> ( G tsums F ) = { U. ( G tsums F ) } )
8 7 eleq2d
 |-  ( ph -> ( C e. ( G tsums F ) <-> C e. { U. ( G tsums F ) } ) )
9 ovex
 |-  ( G tsums F ) e. _V
10 9 uniex
 |-  U. ( G tsums F ) e. _V
11 eleq1
 |-  ( C = U. ( G tsums F ) -> ( C e. _V <-> U. ( G tsums F ) e. _V ) )
12 10 11 mpbiri
 |-  ( C = U. ( G tsums F ) -> C e. _V )
13 elsng
 |-  ( C e. _V -> ( C e. { U. ( G tsums F ) } <-> C = U. ( G tsums F ) ) )
14 12 13 syl
 |-  ( C = U. ( G tsums F ) -> ( C e. { U. ( G tsums F ) } <-> C = U. ( G tsums F ) ) )
15 14 ibir
 |-  ( C = U. ( G tsums F ) -> C e. { U. ( G tsums F ) } )
16 elsni
 |-  ( C e. { U. ( G tsums F ) } -> C = U. ( G tsums F ) )
17 15 16 impbii
 |-  ( C = U. ( G tsums F ) <-> C e. { U. ( G tsums F ) } )
18 8 17 bitr4di
 |-  ( ph -> ( C e. ( G tsums F ) <-> C = U. ( G tsums F ) ) )