| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrge0tsmseq.g |
|- G = ( RR*s |`s ( 0 [,] +oo ) ) |
| 2 |
|
xrge0tsmseq.a |
|- ( ph -> A e. V ) |
| 3 |
|
xrge0tsmseq.f |
|- ( ph -> F : A --> ( 0 [,] +oo ) ) |
| 4 |
|
xrge0tsmseq.h |
|- ( ph -> C e. ( G tsums F ) ) |
| 5 |
1
|
xrge0tsms2 |
|- ( ( A e. V /\ F : A --> ( 0 [,] +oo ) ) -> ( G tsums F ) ~~ 1o ) |
| 6 |
2 3 5
|
syl2anc |
|- ( ph -> ( G tsums F ) ~~ 1o ) |
| 7 |
|
en1eqsn |
|- ( ( C e. ( G tsums F ) /\ ( G tsums F ) ~~ 1o ) -> ( G tsums F ) = { C } ) |
| 8 |
4 6 7
|
syl2anc |
|- ( ph -> ( G tsums F ) = { C } ) |
| 9 |
8
|
unieqd |
|- ( ph -> U. ( G tsums F ) = U. { C } ) |
| 10 |
|
unisng |
|- ( C e. ( G tsums F ) -> U. { C } = C ) |
| 11 |
4 10
|
syl |
|- ( ph -> U. { C } = C ) |
| 12 |
9 11
|
eqtr2d |
|- ( ph -> C = U. ( G tsums F ) ) |