Step |
Hyp |
Ref |
Expression |
1 |
|
xrge0tsmseq.g |
⊢ 𝐺 = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) |
2 |
|
xrge0tsmseq.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
xrge0tsmseq.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
4 |
|
xrge0tsmseq.h |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐺 tsums 𝐹 ) ) |
5 |
1
|
xrge0tsms2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ ( 0 [,] +∞ ) ) → ( 𝐺 tsums 𝐹 ) ≈ 1o ) |
6 |
2 3 5
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) ≈ 1o ) |
7 |
|
en1eqsn |
⊢ ( ( 𝐶 ∈ ( 𝐺 tsums 𝐹 ) ∧ ( 𝐺 tsums 𝐹 ) ≈ 1o ) → ( 𝐺 tsums 𝐹 ) = { 𝐶 } ) |
8 |
4 6 7
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = { 𝐶 } ) |
9 |
8
|
unieqd |
⊢ ( 𝜑 → ∪ ( 𝐺 tsums 𝐹 ) = ∪ { 𝐶 } ) |
10 |
|
unisng |
⊢ ( 𝐶 ∈ ( 𝐺 tsums 𝐹 ) → ∪ { 𝐶 } = 𝐶 ) |
11 |
4 10
|
syl |
⊢ ( 𝜑 → ∪ { 𝐶 } = 𝐶 ) |
12 |
9 11
|
eqtr2d |
⊢ ( 𝜑 → 𝐶 = ∪ ( 𝐺 tsums 𝐹 ) ) |