Metamath Proof Explorer


Theorem esumeq12dvaf

Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 26-Mar-2017)

Ref Expression
Hypotheses esumeq12dvaf.1
|- F/ k ph
esumeq12dvaf.2
|- ( ph -> A = B )
esumeq12dvaf.3
|- ( ( ph /\ k e. A ) -> C = D )
Assertion esumeq12dvaf
|- ( ph -> sum* k e. A C = sum* k e. B D )

Proof

Step Hyp Ref Expression
1 esumeq12dvaf.1
 |-  F/ k ph
2 esumeq12dvaf.2
 |-  ( ph -> A = B )
3 esumeq12dvaf.3
 |-  ( ( ph /\ k e. A ) -> C = D )
4 1 2 alrimi
 |-  ( ph -> A. k A = B )
5 3 ex
 |-  ( ph -> ( k e. A -> C = D ) )
6 1 5 ralrimi
 |-  ( ph -> A. k e. A C = D )
7 mpteq12f
 |-  ( ( A. k A = B /\ A. k e. A C = D ) -> ( k e. A |-> C ) = ( k e. B |-> D ) )
8 4 6 7 syl2anc
 |-  ( ph -> ( k e. A |-> C ) = ( k e. B |-> D ) )
9 8 oveq2d
 |-  ( ph -> ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> C ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. B |-> D ) ) )
10 9 unieqd
 |-  ( ph -> U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> C ) ) = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. B |-> D ) ) )
11 df-esum
 |-  sum* k e. A C = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> C ) )
12 df-esum
 |-  sum* k e. B D = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. B |-> D ) )
13 10 11 12 3eqtr4g
 |-  ( ph -> sum* k e. A C = sum* k e. B D )