Step |
Hyp |
Ref |
Expression |
1 |
|
esumeq12dvaf.1 |
|- F/ k ph |
2 |
|
esumeq12dvaf.2 |
|- ( ph -> A = B ) |
3 |
|
esumeq12dvaf.3 |
|- ( ( ph /\ k e. A ) -> C = D ) |
4 |
1 2
|
alrimi |
|- ( ph -> A. k A = B ) |
5 |
3
|
ex |
|- ( ph -> ( k e. A -> C = D ) ) |
6 |
1 5
|
ralrimi |
|- ( ph -> A. k e. A C = D ) |
7 |
|
mpteq12f |
|- ( ( A. k A = B /\ A. k e. A C = D ) -> ( k e. A |-> C ) = ( k e. B |-> D ) ) |
8 |
4 6 7
|
syl2anc |
|- ( ph -> ( k e. A |-> C ) = ( k e. B |-> D ) ) |
9 |
8
|
oveq2d |
|- ( ph -> ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> C ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. B |-> D ) ) ) |
10 |
9
|
unieqd |
|- ( ph -> U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> C ) ) = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. B |-> D ) ) ) |
11 |
|
df-esum |
|- sum* k e. A C = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> C ) ) |
12 |
|
df-esum |
|- sum* k e. B D = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. B |-> D ) ) |
13 |
10 11 12
|
3eqtr4g |
|- ( ph -> sum* k e. A C = sum* k e. B D ) |