Step |
Hyp |
Ref |
Expression |
1 |
|
esumeq12dvaf.1 |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
esumeq12dvaf.2 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
3 |
|
esumeq12dvaf.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 = 𝐷 ) |
4 |
1 2
|
alrimi |
⊢ ( 𝜑 → ∀ 𝑘 𝐴 = 𝐵 ) |
5 |
3
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → 𝐶 = 𝐷 ) ) |
6 |
1 5
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐶 = 𝐷 ) |
7 |
|
mpteq12f |
⊢ ( ( ∀ 𝑘 𝐴 = 𝐵 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 = 𝐷 ) → ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑘 ∈ 𝐵 ↦ 𝐷 ) ) |
8 |
4 6 7
|
syl2anc |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑘 ∈ 𝐵 ↦ 𝐷 ) ) |
9 |
8
|
oveq2d |
⊢ ( 𝜑 → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐵 ↦ 𝐷 ) ) ) |
10 |
9
|
unieqd |
⊢ ( 𝜑 → ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) = ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐵 ↦ 𝐷 ) ) ) |
11 |
|
df-esum |
⊢ Σ* 𝑘 ∈ 𝐴 𝐶 = ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) |
12 |
|
df-esum |
⊢ Σ* 𝑘 ∈ 𝐵 𝐷 = ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐵 ↦ 𝐷 ) ) |
13 |
10 11 12
|
3eqtr4g |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐶 = Σ* 𝑘 ∈ 𝐵 𝐷 ) |