Metamath Proof Explorer


Definition df-esum

Description: Define a short-hand for the possibly infinite sum over the extended nonnegative reals. sum* is relying on the properties of the tsums , developped by Mario Carneiro. (Contributed by Thierry Arnoux, 21-Sep-2016)

Ref Expression
Assertion df-esum
|- sum* k e. A B = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vk
 |-  k
1 cA
 |-  A
2 cB
 |-  B
3 1 2 0 cesum
 |-  sum* k e. A B
4 cxrs
 |-  RR*s
5 cress
 |-  |`s
6 cc0
 |-  0
7 cicc
 |-  [,]
8 cpnf
 |-  +oo
9 6 8 7 co
 |-  ( 0 [,] +oo )
10 4 9 5 co
 |-  ( RR*s |`s ( 0 [,] +oo ) )
11 ctsu
 |-  tsums
12 0 1 2 cmpt
 |-  ( k e. A |-> B )
13 10 12 11 co
 |-  ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) )
14 13 cuni
 |-  U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) )
15 3 14 wceq
 |-  sum* k e. A B = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) )