| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( RR*s |`s ( RR* \ { -oo } ) ) = ( RR*s |`s ( RR* \ { -oo } ) ) |
| 2 |
1
|
xrs1cmn |
|- ( RR*s |`s ( RR* \ { -oo } ) ) e. CMnd |
| 3 |
1
|
xrge0subm |
|- ( 0 [,] +oo ) e. ( SubMnd ` ( RR*s |`s ( RR* \ { -oo } ) ) ) |
| 4 |
|
xrex |
|- RR* e. _V |
| 5 |
4
|
difexi |
|- ( RR* \ { -oo } ) e. _V |
| 6 |
|
difss |
|- ( RR* \ { -oo } ) C_ RR* |
| 7 |
|
xrsbas |
|- RR* = ( Base ` RR*s ) |
| 8 |
1 7
|
ressbas2 |
|- ( ( RR* \ { -oo } ) C_ RR* -> ( RR* \ { -oo } ) = ( Base ` ( RR*s |`s ( RR* \ { -oo } ) ) ) ) |
| 9 |
6 8
|
ax-mp |
|- ( RR* \ { -oo } ) = ( Base ` ( RR*s |`s ( RR* \ { -oo } ) ) ) |
| 10 |
9
|
submss |
|- ( ( 0 [,] +oo ) e. ( SubMnd ` ( RR*s |`s ( RR* \ { -oo } ) ) ) -> ( 0 [,] +oo ) C_ ( RR* \ { -oo } ) ) |
| 11 |
3 10
|
ax-mp |
|- ( 0 [,] +oo ) C_ ( RR* \ { -oo } ) |
| 12 |
|
ressabs |
|- ( ( ( RR* \ { -oo } ) e. _V /\ ( 0 [,] +oo ) C_ ( RR* \ { -oo } ) ) -> ( ( RR*s |`s ( RR* \ { -oo } ) ) |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) ) ) |
| 13 |
5 11 12
|
mp2an |
|- ( ( RR*s |`s ( RR* \ { -oo } ) ) |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) ) |
| 14 |
13
|
eqcomi |
|- ( RR*s |`s ( 0 [,] +oo ) ) = ( ( RR*s |`s ( RR* \ { -oo } ) ) |`s ( 0 [,] +oo ) ) |
| 15 |
14
|
submmnd |
|- ( ( 0 [,] +oo ) e. ( SubMnd ` ( RR*s |`s ( RR* \ { -oo } ) ) ) -> ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd ) |
| 16 |
3 15
|
ax-mp |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd |
| 17 |
14
|
subcmn |
|- ( ( ( RR*s |`s ( RR* \ { -oo } ) ) e. CMnd /\ ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd ) -> ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd ) |
| 18 |
2 16 17
|
mp2an |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd |