| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) = ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) |
| 2 |
1
|
xrs1cmn |
⊢ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ∈ CMnd |
| 3 |
1
|
xrge0subm |
⊢ ( 0 [,] +∞ ) ∈ ( SubMnd ‘ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ) |
| 4 |
|
xrex |
⊢ ℝ* ∈ V |
| 5 |
4
|
difexi |
⊢ ( ℝ* ∖ { -∞ } ) ∈ V |
| 6 |
|
difss |
⊢ ( ℝ* ∖ { -∞ } ) ⊆ ℝ* |
| 7 |
|
xrsbas |
⊢ ℝ* = ( Base ‘ ℝ*𝑠 ) |
| 8 |
1 7
|
ressbas2 |
⊢ ( ( ℝ* ∖ { -∞ } ) ⊆ ℝ* → ( ℝ* ∖ { -∞ } ) = ( Base ‘ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ) ) |
| 9 |
6 8
|
ax-mp |
⊢ ( ℝ* ∖ { -∞ } ) = ( Base ‘ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ) |
| 10 |
9
|
submss |
⊢ ( ( 0 [,] +∞ ) ∈ ( SubMnd ‘ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ) → ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } ) ) |
| 11 |
3 10
|
ax-mp |
⊢ ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } ) |
| 12 |
|
ressabs |
⊢ ( ( ( ℝ* ∖ { -∞ } ) ∈ V ∧ ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } ) ) → ( ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ↾s ( 0 [,] +∞ ) ) = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 13 |
5 11 12
|
mp2an |
⊢ ( ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ↾s ( 0 [,] +∞ ) ) = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) |
| 14 |
13
|
eqcomi |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) = ( ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ↾s ( 0 [,] +∞ ) ) |
| 15 |
14
|
submmnd |
⊢ ( ( 0 [,] +∞ ) ∈ ( SubMnd ‘ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ) → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd ) |
| 16 |
3 15
|
ax-mp |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd |
| 17 |
14
|
subcmn |
⊢ ( ( ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ∈ CMnd ∧ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd ) → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd ) |
| 18 |
2 16 17
|
mp2an |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd |