Metamath Proof Explorer


Theorem xrge0subm

Description: The nonnegative extended real numbers are a submonoid of the nonnegative-infinite extended reals. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Hypothesis xrs1mnd.1 𝑅 = ( ℝ*𝑠s ( ℝ* ∖ { -∞ } ) )
Assertion xrge0subm ( 0 [,] +∞ ) ∈ ( SubMnd ‘ 𝑅 )

Proof

Step Hyp Ref Expression
1 xrs1mnd.1 𝑅 = ( ℝ*𝑠s ( ℝ* ∖ { -∞ } ) )
2 simpl ( ( 𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥 ) → 𝑥 ∈ ℝ* )
3 ge0nemnf ( ( 𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥 ) → 𝑥 ≠ -∞ )
4 2 3 jca ( ( 𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥 ) → ( 𝑥 ∈ ℝ*𝑥 ≠ -∞ ) )
5 elxrge0 ( 𝑥 ∈ ( 0 [,] +∞ ) ↔ ( 𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥 ) )
6 eldifsn ( 𝑥 ∈ ( ℝ* ∖ { -∞ } ) ↔ ( 𝑥 ∈ ℝ*𝑥 ≠ -∞ ) )
7 4 5 6 3imtr4i ( 𝑥 ∈ ( 0 [,] +∞ ) → 𝑥 ∈ ( ℝ* ∖ { -∞ } ) )
8 7 ssriv ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } )
9 0e0iccpnf 0 ∈ ( 0 [,] +∞ )
10 ge0xaddcl ( ( 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → ( 𝑥 +𝑒 𝑦 ) ∈ ( 0 [,] +∞ ) )
11 10 rgen2 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 +𝑒 𝑦 ) ∈ ( 0 [,] +∞ )
12 1 xrs1mnd 𝑅 ∈ Mnd
13 difss ( ℝ* ∖ { -∞ } ) ⊆ ℝ*
14 xrsbas * = ( Base ‘ ℝ*𝑠 )
15 1 14 ressbas2 ( ( ℝ* ∖ { -∞ } ) ⊆ ℝ* → ( ℝ* ∖ { -∞ } ) = ( Base ‘ 𝑅 ) )
16 13 15 ax-mp ( ℝ* ∖ { -∞ } ) = ( Base ‘ 𝑅 )
17 1 xrs10 0 = ( 0g𝑅 )
18 xrex * ∈ V
19 18 difexi ( ℝ* ∖ { -∞ } ) ∈ V
20 xrsadd +𝑒 = ( +g ‘ ℝ*𝑠 )
21 1 20 ressplusg ( ( ℝ* ∖ { -∞ } ) ∈ V → +𝑒 = ( +g𝑅 ) )
22 19 21 ax-mp +𝑒 = ( +g𝑅 )
23 16 17 22 issubm ( 𝑅 ∈ Mnd → ( ( 0 [,] +∞ ) ∈ ( SubMnd ‘ 𝑅 ) ↔ ( ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } ) ∧ 0 ∈ ( 0 [,] +∞ ) ∧ ∀ 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 +𝑒 𝑦 ) ∈ ( 0 [,] +∞ ) ) ) )
24 12 23 ax-mp ( ( 0 [,] +∞ ) ∈ ( SubMnd ‘ 𝑅 ) ↔ ( ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } ) ∧ 0 ∈ ( 0 [,] +∞ ) ∧ ∀ 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 +𝑒 𝑦 ) ∈ ( 0 [,] +∞ ) ) )
25 8 9 11 24 mpbir3an ( 0 [,] +∞ ) ∈ ( SubMnd ‘ 𝑅 )