Metamath Proof Explorer


Definition df-meas

Description: Define a measure as a nonnegative countably additive function over a sigma-algebra onto ( 0 , +oo ) . (Contributed by Thierry Arnoux, 10-Sep-2016)

Ref Expression
Assertion df-meas measures=sransigAlgebram|m:s0+∞m=0x𝒫sxωDisjyxymx=*yxmy

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmeas classmeasures
1 vs setvars
2 csiga classsigAlgebra
3 2 crn classransigAlgebra
4 3 cuni classransigAlgebra
5 vm setvarm
6 5 cv setvarm
7 1 cv setvars
8 cc0 class0
9 cicc class.
10 cpnf class+∞
11 8 10 9 co class0+∞
12 7 11 6 wf wffm:s0+∞
13 c0 class
14 13 6 cfv classm
15 14 8 wceq wffm=0
16 vx setvarx
17 7 cpw class𝒫s
18 16 cv setvarx
19 cdom class
20 com classω
21 18 20 19 wbr wffxω
22 vy setvary
23 22 cv setvary
24 22 18 23 wdisj wffDisjyxy
25 21 24 wa wffxωDisjyxy
26 18 cuni classx
27 26 6 cfv classmx
28 23 6 cfv classmy
29 18 28 22 cesum class*yxmy
30 27 29 wceq wffmx=*yxmy
31 25 30 wi wffxωDisjyxymx=*yxmy
32 31 16 17 wral wffx𝒫sxωDisjyxymx=*yxmy
33 12 15 32 w3a wffm:s0+∞m=0x𝒫sxωDisjyxymx=*yxmy
34 33 5 cab classm|m:s0+∞m=0x𝒫sxωDisjyxymx=*yxmy
35 1 4 34 cmpt classsransigAlgebram|m:s0+∞m=0x𝒫sxωDisjyxymx=*yxmy
36 0 35 wceq wffmeasures=sransigAlgebram|m:s0+∞m=0x𝒫sxωDisjyxymx=*yxmy