Metamath Proof Explorer


Theorem isanmbfm

Description: The predicate to be a measurable function. (Contributed by Thierry Arnoux, 30-Jan-2017) Remove hypotheses. (Revised by SN, 13-Jan-2025)

Ref Expression
Hypothesis isanmbfm.1 φ F S MblFn μ T
Assertion isanmbfm φ F ran MblFn μ

Proof

Step Hyp Ref Expression
1 isanmbfm.1 φ F S MblFn μ T
2 ovssunirn S MblFn μ T ran MblFn μ
3 2 1 sselid φ F ran MblFn μ