Metamath Proof Explorer


Theorem isanmbfm

Description: The predicate to be a measurable function. (Contributed by Thierry Arnoux, 30-Jan-2017)

Ref Expression
Hypotheses mbfmf.1 φ S ran sigAlgebra
mbfmf.2 φ T ran sigAlgebra
mbfmf.3 φ F S MblFn μ T
Assertion isanmbfm φ F ran MblFn μ

Proof

Step Hyp Ref Expression
1 mbfmf.1 φ S ran sigAlgebra
2 mbfmf.2 φ T ran sigAlgebra
3 mbfmf.3 φ F S MblFn μ T
4 1 2 ismbfm φ F S MblFn μ T F T S x T F -1 x S
5 3 4 mpbid φ F T S x T F -1 x S
6 unieq s = S s = S
7 6 oveq2d s = S t s = t S
8 7 eleq2d s = S F t s F t S
9 eleq2 s = S F -1 x s F -1 x S
10 9 ralbidv s = S x t F -1 x s x t F -1 x S
11 8 10 anbi12d s = S F t s x t F -1 x s F t S x t F -1 x S
12 unieq t = T t = T
13 12 oveq1d t = T t S = T S
14 13 eleq2d t = T F t S F T S
15 raleq t = T x t F -1 x S x T F -1 x S
16 14 15 anbi12d t = T F t S x t F -1 x S F T S x T F -1 x S
17 11 16 rspc2ev S ran sigAlgebra T ran sigAlgebra F T S x T F -1 x S s ran sigAlgebra t ran sigAlgebra F t s x t F -1 x s
18 1 2 5 17 syl3anc φ s ran sigAlgebra t ran sigAlgebra F t s x t F -1 x s
19 elunirnmbfm F ran MblFn μ s ran sigAlgebra t ran sigAlgebra F t s x t F -1 x s
20 18 19 sylibr φ F ran MblFn μ