Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Abstract measure
Measures
measbasedom
Next ⟩
measfrge0
Metamath Proof Explorer
Ascii
Unicode
Theorem
measbasedom
Description:
The base set of a measure is its domain.
(Contributed by
Thierry Arnoux
, 25-Dec-2016)
Ref
Expression
Assertion
measbasedom
⊢
M
∈
⋃
ran
⁡
measures
↔
M
∈
measures
⁡
dom
⁡
M
Proof
Step
Hyp
Ref
Expression
1
isrnmeas
⊢
M
∈
⋃
ran
⁡
measures
→
dom
⁡
M
∈
⋃
ran
⁡
sigAlgebra
∧
M
:
dom
⁡
M
⟶
0
+∞
∧
M
⁡
∅
=
0
∧
∀
x
∈
𝒫
dom
⁡
M
x
≼
ω
∧
Disj
y
∈
x
y
→
M
⁡
⋃
x
=
∑
*
y
∈
x
M
⁡
y
2
1
simprd
⊢
M
∈
⋃
ran
⁡
measures
→
M
:
dom
⁡
M
⟶
0
+∞
∧
M
⁡
∅
=
0
∧
∀
x
∈
𝒫
dom
⁡
M
x
≼
ω
∧
Disj
y
∈
x
y
→
M
⁡
⋃
x
=
∑
*
y
∈
x
M
⁡
y
3
dmmeas
⊢
M
∈
⋃
ran
⁡
measures
→
dom
⁡
M
∈
⋃
ran
⁡
sigAlgebra
4
ismeas
⊢
dom
⁡
M
∈
⋃
ran
⁡
sigAlgebra
→
M
∈
measures
⁡
dom
⁡
M
↔
M
:
dom
⁡
M
⟶
0
+∞
∧
M
⁡
∅
=
0
∧
∀
x
∈
𝒫
dom
⁡
M
x
≼
ω
∧
Disj
y
∈
x
y
→
M
⁡
⋃
x
=
∑
*
y
∈
x
M
⁡
y
5
3
4
syl
⊢
M
∈
⋃
ran
⁡
measures
→
M
∈
measures
⁡
dom
⁡
M
↔
M
:
dom
⁡
M
⟶
0
+∞
∧
M
⁡
∅
=
0
∧
∀
x
∈
𝒫
dom
⁡
M
x
≼
ω
∧
Disj
y
∈
x
y
→
M
⁡
⋃
x
=
∑
*
y
∈
x
M
⁡
y
6
2
5
mpbird
⊢
M
∈
⋃
ran
⁡
measures
→
M
∈
measures
⁡
dom
⁡
M
7
df-meas
⊢
measures
=
s
∈
⋃
ran
⁡
sigAlgebra
⟼
m
|
m
:
s
⟶
0
+∞
∧
m
⁡
∅
=
0
∧
∀
x
∈
𝒫
s
x
≼
ω
∧
Disj
y
∈
x
y
→
m
⁡
⋃
x
=
∑
*
y
∈
x
m
⁡
y
8
7
funmpt2
⊢
Fun
⁡
measures
9
elunirn2
⊢
Fun
⁡
measures
∧
M
∈
measures
⁡
dom
⁡
M
→
M
∈
⋃
ran
⁡
measures
10
8
9
mpan
⊢
M
∈
measures
⁡
dom
⁡
M
→
M
∈
⋃
ran
⁡
measures
11
6
10
impbii
⊢
M
∈
⋃
ran
⁡
measures
↔
M
∈
measures
⁡
dom
⁡
M