Metamath Proof Explorer


Theorem ismeas

Description: The property of being a measure. (Contributed by Thierry Arnoux, 10-Sep-2016) (Revised by Thierry Arnoux, 19-Oct-2016)

Ref Expression
Assertion ismeas SransigAlgebraMmeasuresSM:S0+∞M=0x𝒫SxωDisjyxyMx=*yxMy

Proof

Step Hyp Ref Expression
1 elex MmeasuresSMV
2 1 a1i SransigAlgebraMmeasuresSMV
3 simp1 M:S0+∞M=0x𝒫SxωDisjyxyMx=*yxMyM:S0+∞
4 ovex 0+∞V
5 fex2 M:S0+∞SransigAlgebra0+∞VMV
6 5 3expb M:S0+∞SransigAlgebra0+∞VMV
7 6 expcom SransigAlgebra0+∞VM:S0+∞MV
8 4 7 mpan2 SransigAlgebraM:S0+∞MV
9 3 8 syl5 SransigAlgebraM:S0+∞M=0x𝒫SxωDisjyxyMx=*yxMyMV
10 df-meas measures=sransigAlgebram|m:s0+∞m=0x𝒫sxωDisjyxymx=*yxmy
11 vex sV
12 mapex sV0+∞Vm|m:s0+∞V
13 11 4 12 mp2an m|m:s0+∞V
14 simp1 m:s0+∞m=0x𝒫sxωDisjyxymx=*yxmym:s0+∞
15 14 ss2abi m|m:s0+∞m=0x𝒫sxωDisjyxymx=*yxmym|m:s0+∞
16 13 15 ssexi m|m:s0+∞m=0x𝒫sxωDisjyxymx=*yxmyV
17 simpr s=Sm=Mm=M
18 simpl s=Sm=Ms=S
19 17 18 feq12d s=Sm=Mm:s0+∞M:S0+∞
20 fveq1 m=Mm=M
21 20 eqeq1d m=Mm=0M=0
22 21 adantl s=Sm=Mm=0M=0
23 18 pweqd s=Sm=M𝒫s=𝒫S
24 fveq1 m=Mmx=Mx
25 fveq1 m=Mmy=My
26 25 esumeq2sdv m=M*yxmy=*yxMy
27 24 26 eqeq12d m=Mmx=*yxmyMx=*yxMy
28 27 imbi2d m=MxωDisjyxymx=*yxmyxωDisjyxyMx=*yxMy
29 28 adantl s=Sm=MxωDisjyxymx=*yxmyxωDisjyxyMx=*yxMy
30 23 29 raleqbidv s=Sm=Mx𝒫sxωDisjyxymx=*yxmyx𝒫SxωDisjyxyMx=*yxMy
31 19 22 30 3anbi123d s=Sm=Mm:s0+∞m=0x𝒫sxωDisjyxymx=*yxmyM:S0+∞M=0x𝒫SxωDisjyxyMx=*yxMy
32 10 16 31 abfmpel SransigAlgebraMVMmeasuresSM:S0+∞M=0x𝒫SxωDisjyxyMx=*yxMy
33 32 ex SransigAlgebraMVMmeasuresSM:S0+∞M=0x𝒫SxωDisjyxyMx=*yxMy
34 2 9 33 pm5.21ndd SransigAlgebraMmeasuresSM:S0+∞M=0x𝒫SxωDisjyxyMx=*yxMy