Metamath Proof Explorer


Theorem ismeas

Description: The property of being a measure. (Contributed by Thierry Arnoux, 10-Sep-2016) (Revised by Thierry Arnoux, 19-Oct-2016)

Ref Expression
Assertion ismeas S ran sigAlgebra M measures S M : S 0 +∞ M = 0 x 𝒫 S x ω Disj y x y M x = * y x M y

Proof

Step Hyp Ref Expression
1 elex M measures S M V
2 1 a1i S ran sigAlgebra M measures S M V
3 simp1 M : S 0 +∞ M = 0 x 𝒫 S x ω Disj y x y M x = * y x M y M : S 0 +∞
4 ovex 0 +∞ V
5 fex2 M : S 0 +∞ S ran sigAlgebra 0 +∞ V M V
6 5 3expb M : S 0 +∞ S ran sigAlgebra 0 +∞ V M V
7 6 expcom S ran sigAlgebra 0 +∞ V M : S 0 +∞ M V
8 4 7 mpan2 S ran sigAlgebra M : S 0 +∞ M V
9 3 8 syl5 S ran sigAlgebra M : S 0 +∞ M = 0 x 𝒫 S x ω Disj y x y M x = * y x M y M V
10 df-meas measures = s ran sigAlgebra m | m : s 0 +∞ m = 0 x 𝒫 s x ω Disj y x y m x = * y x m y
11 vex s V
12 mapex s V 0 +∞ V m | m : s 0 +∞ V
13 11 4 12 mp2an m | m : s 0 +∞ V
14 simp1 m : s 0 +∞ m = 0 x 𝒫 s x ω Disj y x y m x = * y x m y m : s 0 +∞
15 14 ss2abi m | m : s 0 +∞ m = 0 x 𝒫 s x ω Disj y x y m x = * y x m y m | m : s 0 +∞
16 13 15 ssexi m | m : s 0 +∞ m = 0 x 𝒫 s x ω Disj y x y m x = * y x m y V
17 simpr s = S m = M m = M
18 simpl s = S m = M s = S
19 17 18 feq12d s = S m = M m : s 0 +∞ M : S 0 +∞
20 fveq1 m = M m = M
21 20 eqeq1d m = M m = 0 M = 0
22 21 adantl s = S m = M m = 0 M = 0
23 18 pweqd s = S m = M 𝒫 s = 𝒫 S
24 fveq1 m = M m x = M x
25 fveq1 m = M m y = M y
26 25 esumeq2sdv m = M * y x m y = * y x M y
27 24 26 eqeq12d m = M m x = * y x m y M x = * y x M y
28 27 imbi2d m = M x ω Disj y x y m x = * y x m y x ω Disj y x y M x = * y x M y
29 28 adantl s = S m = M x ω Disj y x y m x = * y x m y x ω Disj y x y M x = * y x M y
30 23 29 raleqbidv s = S m = M x 𝒫 s x ω Disj y x y m x = * y x m y x 𝒫 S x ω Disj y x y M x = * y x M y
31 19 22 30 3anbi123d s = S m = M m : s 0 +∞ m = 0 x 𝒫 s x ω Disj y x y m x = * y x m y M : S 0 +∞ M = 0 x 𝒫 S x ω Disj y x y M x = * y x M y
32 10 16 31 abfmpel S ran sigAlgebra M V M measures S M : S 0 +∞ M = 0 x 𝒫 S x ω Disj y x y M x = * y x M y
33 32 ex S ran sigAlgebra M V M measures S M : S 0 +∞ M = 0 x 𝒫 S x ω Disj y x y M x = * y x M y
34 2 9 33 pm5.21ndd S ran sigAlgebra M measures S M : S 0 +∞ M = 0 x 𝒫 S x ω Disj y x y M x = * y x M y