Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
⊢ ( 𝑀 ∈ ( measures ‘ 𝑆 ) → 𝑀 ∈ V ) |
2 |
1
|
a1i |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ( 𝑀 ∈ ( measures ‘ 𝑆 ) → 𝑀 ∈ V ) ) |
3 |
|
simp1 |
⊢ ( ( 𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) → 𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) ) |
4 |
|
ovex |
⊢ ( 0 [,] +∞ ) ∈ V |
5 |
|
fex2 |
⊢ ( ( 𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ 𝑆 ∈ ∪ ran sigAlgebra ∧ ( 0 [,] +∞ ) ∈ V ) → 𝑀 ∈ V ) |
6 |
5
|
3expb |
⊢ ( ( 𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ( 0 [,] +∞ ) ∈ V ) ) → 𝑀 ∈ V ) |
7 |
6
|
expcom |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ( 0 [,] +∞ ) ∈ V ) → ( 𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) → 𝑀 ∈ V ) ) |
8 |
4 7
|
mpan2 |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ( 𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) → 𝑀 ∈ V ) ) |
9 |
3 8
|
syl5 |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ( ( 𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) → 𝑀 ∈ V ) ) |
10 |
|
df-meas |
⊢ measures = ( 𝑠 ∈ ∪ ran sigAlgebra ↦ { 𝑚 ∣ ( 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) ) } ) |
11 |
|
vex |
⊢ 𝑠 ∈ V |
12 |
|
mapex |
⊢ ( ( 𝑠 ∈ V ∧ ( 0 [,] +∞ ) ∈ V ) → { 𝑚 ∣ 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) } ∈ V ) |
13 |
11 4 12
|
mp2an |
⊢ { 𝑚 ∣ 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) } ∈ V |
14 |
|
simp1 |
⊢ ( ( 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) ) → 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) ) |
15 |
14
|
ss2abi |
⊢ { 𝑚 ∣ ( 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) ) } ⊆ { 𝑚 ∣ 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) } |
16 |
13 15
|
ssexi |
⊢ { 𝑚 ∣ ( 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) ) } ∈ V |
17 |
|
simpr |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑚 = 𝑀 ) → 𝑚 = 𝑀 ) |
18 |
|
simpl |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑚 = 𝑀 ) → 𝑠 = 𝑆 ) |
19 |
17 18
|
feq12d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑚 = 𝑀 ) → ( 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) ↔ 𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) ) ) |
20 |
|
fveq1 |
⊢ ( 𝑚 = 𝑀 → ( 𝑚 ‘ ∅ ) = ( 𝑀 ‘ ∅ ) ) |
21 |
20
|
eqeq1d |
⊢ ( 𝑚 = 𝑀 → ( ( 𝑚 ‘ ∅ ) = 0 ↔ ( 𝑀 ‘ ∅ ) = 0 ) ) |
22 |
21
|
adantl |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑚 = 𝑀 ) → ( ( 𝑚 ‘ ∅ ) = 0 ↔ ( 𝑀 ‘ ∅ ) = 0 ) ) |
23 |
18
|
pweqd |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑚 = 𝑀 ) → 𝒫 𝑠 = 𝒫 𝑆 ) |
24 |
|
fveq1 |
⊢ ( 𝑚 = 𝑀 → ( 𝑚 ‘ ∪ 𝑥 ) = ( 𝑀 ‘ ∪ 𝑥 ) ) |
25 |
|
fveq1 |
⊢ ( 𝑚 = 𝑀 → ( 𝑚 ‘ 𝑦 ) = ( 𝑀 ‘ 𝑦 ) ) |
26 |
25
|
esumeq2sdv |
⊢ ( 𝑚 = 𝑀 → Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) |
27 |
24 26
|
eqeq12d |
⊢ ( 𝑚 = 𝑀 → ( ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ↔ ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) |
28 |
27
|
imbi2d |
⊢ ( 𝑚 = 𝑀 → ( ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) ↔ ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) ) |
29 |
28
|
adantl |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑚 = 𝑀 ) → ( ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) ↔ ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) ) |
30 |
23 29
|
raleqbidv |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑚 = 𝑀 ) → ( ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) ) |
31 |
19 22 30
|
3anbi123d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑚 = 𝑀 ) → ( ( 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) ) ↔ ( 𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) ) ) |
32 |
10 16 31
|
abfmpel |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑀 ∈ V ) → ( 𝑀 ∈ ( measures ‘ 𝑆 ) ↔ ( 𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) ) ) |
33 |
32
|
ex |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ( 𝑀 ∈ V → ( 𝑀 ∈ ( measures ‘ 𝑆 ) ↔ ( 𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) ) ) ) |
34 |
2 9 33
|
pm5.21ndd |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ( 𝑀 ∈ ( measures ‘ 𝑆 ) ↔ ( 𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) ) ) |