Metamath Proof Explorer


Theorem isrnmeas

Description: The property of being a measure on an undefined base sigma-algebra. (Contributed by Thierry Arnoux, 25-Dec-2016)

Ref Expression
Assertion isrnmeas ( 𝑀 ran measures → ( dom 𝑀 ran sigAlgebra ∧ ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = Σ* 𝑦𝑥 ( 𝑀𝑦 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 df-meas measures = ( 𝑠 ran sigAlgebra ↦ { 𝑚 ∣ ( 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑚 𝑥 ) = Σ* 𝑦𝑥 ( 𝑚𝑦 ) ) ) } )
2 vex 𝑠 ∈ V
3 ovex ( 0 [,] +∞ ) ∈ V
4 mapex ( ( 𝑠 ∈ V ∧ ( 0 [,] +∞ ) ∈ V ) → { 𝑚𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) } ∈ V )
5 2 3 4 mp2an { 𝑚𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) } ∈ V
6 simp1 ( ( 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑚 𝑥 ) = Σ* 𝑦𝑥 ( 𝑚𝑦 ) ) ) → 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) )
7 6 ss2abi { 𝑚 ∣ ( 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑚 𝑥 ) = Σ* 𝑦𝑥 ( 𝑚𝑦 ) ) ) } ⊆ { 𝑚𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) }
8 5 7 ssexi { 𝑚 ∣ ( 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑚 𝑥 ) = Σ* 𝑦𝑥 ( 𝑚𝑦 ) ) ) } ∈ V
9 feq1 ( 𝑚 = 𝑀 → ( 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) ↔ 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ) )
10 fveq1 ( 𝑚 = 𝑀 → ( 𝑚 ‘ ∅ ) = ( 𝑀 ‘ ∅ ) )
11 10 eqeq1d ( 𝑚 = 𝑀 → ( ( 𝑚 ‘ ∅ ) = 0 ↔ ( 𝑀 ‘ ∅ ) = 0 ) )
12 fveq1 ( 𝑚 = 𝑀 → ( 𝑚 𝑥 ) = ( 𝑀 𝑥 ) )
13 fveq1 ( 𝑚 = 𝑀 → ( 𝑚𝑦 ) = ( 𝑀𝑦 ) )
14 13 esumeq2sdv ( 𝑚 = 𝑀 → Σ* 𝑦𝑥 ( 𝑚𝑦 ) = Σ* 𝑦𝑥 ( 𝑀𝑦 ) )
15 12 14 eqeq12d ( 𝑚 = 𝑀 → ( ( 𝑚 𝑥 ) = Σ* 𝑦𝑥 ( 𝑚𝑦 ) ↔ ( 𝑀 𝑥 ) = Σ* 𝑦𝑥 ( 𝑀𝑦 ) ) )
16 15 imbi2d ( 𝑚 = 𝑀 → ( ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑚 𝑥 ) = Σ* 𝑦𝑥 ( 𝑚𝑦 ) ) ↔ ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = Σ* 𝑦𝑥 ( 𝑀𝑦 ) ) ) )
17 16 ralbidv ( 𝑚 = 𝑀 → ( ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑚 𝑥 ) = Σ* 𝑦𝑥 ( 𝑚𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = Σ* 𝑦𝑥 ( 𝑀𝑦 ) ) ) )
18 9 11 17 3anbi123d ( 𝑚 = 𝑀 → ( ( 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑚 𝑥 ) = Σ* 𝑦𝑥 ( 𝑚𝑦 ) ) ) ↔ ( 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = Σ* 𝑦𝑥 ( 𝑀𝑦 ) ) ) ) )
19 1 8 18 abfmpunirn ( 𝑀 ran measures ↔ ( 𝑀 ∈ V ∧ ∃ 𝑠 ran sigAlgebra ( 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = Σ* 𝑦𝑥 ( 𝑀𝑦 ) ) ) ) )
20 19 simprbi ( 𝑀 ran measures → ∃ 𝑠 ran sigAlgebra ( 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = Σ* 𝑦𝑥 ( 𝑀𝑦 ) ) ) )
21 fdm ( 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) → dom 𝑀 = 𝑠 )
22 21 3ad2ant1 ( ( 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = Σ* 𝑦𝑥 ( 𝑀𝑦 ) ) ) → dom 𝑀 = 𝑠 )
23 22 adantl ( ( 𝑠 ran sigAlgebra ∧ ( 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = Σ* 𝑦𝑥 ( 𝑀𝑦 ) ) ) ) → dom 𝑀 = 𝑠 )
24 simpl ( ( 𝑠 ran sigAlgebra ∧ ( 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = Σ* 𝑦𝑥 ( 𝑀𝑦 ) ) ) ) → 𝑠 ran sigAlgebra )
25 23 24 eqeltrd ( ( 𝑠 ran sigAlgebra ∧ ( 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = Σ* 𝑦𝑥 ( 𝑀𝑦 ) ) ) ) → dom 𝑀 ran sigAlgebra )
26 simp1 ( ( 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = Σ* 𝑦𝑥 ( 𝑀𝑦 ) ) ) → 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) )
27 feq2 ( dom 𝑀 = 𝑠 → ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ↔ 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ) )
28 27 biimpar ( ( dom 𝑀 = 𝑠𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ) → 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) )
29 22 26 28 syl2anc ( ( 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = Σ* 𝑦𝑥 ( 𝑀𝑦 ) ) ) → 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) )
30 simp2 ( ( 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = Σ* 𝑦𝑥 ( 𝑀𝑦 ) ) ) → ( 𝑀 ‘ ∅ ) = 0 )
31 simp3 ( ( 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = Σ* 𝑦𝑥 ( 𝑀𝑦 ) ) ) → ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = Σ* 𝑦𝑥 ( 𝑀𝑦 ) ) )
32 pweq ( dom 𝑀 = 𝑠 → 𝒫 dom 𝑀 = 𝒫 𝑠 )
33 32 raleqdv ( dom 𝑀 = 𝑠 → ( ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = Σ* 𝑦𝑥 ( 𝑀𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = Σ* 𝑦𝑥 ( 𝑀𝑦 ) ) ) )
34 33 biimpar ( ( dom 𝑀 = 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = Σ* 𝑦𝑥 ( 𝑀𝑦 ) ) ) → ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = Σ* 𝑦𝑥 ( 𝑀𝑦 ) ) )
35 22 31 34 syl2anc ( ( 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = Σ* 𝑦𝑥 ( 𝑀𝑦 ) ) ) → ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = Σ* 𝑦𝑥 ( 𝑀𝑦 ) ) )
36 29 30 35 3jca ( ( 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = Σ* 𝑦𝑥 ( 𝑀𝑦 ) ) ) → ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = Σ* 𝑦𝑥 ( 𝑀𝑦 ) ) ) )
37 36 adantl ( ( 𝑠 ran sigAlgebra ∧ ( 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = Σ* 𝑦𝑥 ( 𝑀𝑦 ) ) ) ) → ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = Σ* 𝑦𝑥 ( 𝑀𝑦 ) ) ) )
38 25 37 jca ( ( 𝑠 ran sigAlgebra ∧ ( 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = Σ* 𝑦𝑥 ( 𝑀𝑦 ) ) ) ) → ( dom 𝑀 ran sigAlgebra ∧ ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = Σ* 𝑦𝑥 ( 𝑀𝑦 ) ) ) ) )
39 38 rexlimiva ( ∃ 𝑠 ran sigAlgebra ( 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = Σ* 𝑦𝑥 ( 𝑀𝑦 ) ) ) → ( dom 𝑀 ran sigAlgebra ∧ ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = Σ* 𝑦𝑥 ( 𝑀𝑦 ) ) ) ) )
40 20 39 syl ( 𝑀 ran measures → ( dom 𝑀 ran sigAlgebra ∧ ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑀 𝑥 ) = Σ* 𝑦𝑥 ( 𝑀𝑦 ) ) ) ) )