| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-meas |
⊢ measures = ( 𝑠 ∈ ∪ ran sigAlgebra ↦ { 𝑚 ∣ ( 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) ) } ) |
| 2 |
|
vex |
⊢ 𝑠 ∈ V |
| 3 |
|
ovex |
⊢ ( 0 [,] +∞ ) ∈ V |
| 4 |
|
mapex |
⊢ ( ( 𝑠 ∈ V ∧ ( 0 [,] +∞ ) ∈ V ) → { 𝑚 ∣ 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) } ∈ V ) |
| 5 |
2 3 4
|
mp2an |
⊢ { 𝑚 ∣ 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) } ∈ V |
| 6 |
|
simp1 |
⊢ ( ( 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) ) → 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) ) |
| 7 |
6
|
ss2abi |
⊢ { 𝑚 ∣ ( 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) ) } ⊆ { 𝑚 ∣ 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) } |
| 8 |
5 7
|
ssexi |
⊢ { 𝑚 ∣ ( 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) ) } ∈ V |
| 9 |
|
feq1 |
⊢ ( 𝑚 = 𝑀 → ( 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) ↔ 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ) ) |
| 10 |
|
fveq1 |
⊢ ( 𝑚 = 𝑀 → ( 𝑚 ‘ ∅ ) = ( 𝑀 ‘ ∅ ) ) |
| 11 |
10
|
eqeq1d |
⊢ ( 𝑚 = 𝑀 → ( ( 𝑚 ‘ ∅ ) = 0 ↔ ( 𝑀 ‘ ∅ ) = 0 ) ) |
| 12 |
|
fveq1 |
⊢ ( 𝑚 = 𝑀 → ( 𝑚 ‘ ∪ 𝑥 ) = ( 𝑀 ‘ ∪ 𝑥 ) ) |
| 13 |
|
fveq1 |
⊢ ( 𝑚 = 𝑀 → ( 𝑚 ‘ 𝑦 ) = ( 𝑀 ‘ 𝑦 ) ) |
| 14 |
13
|
esumeq2sdv |
⊢ ( 𝑚 = 𝑀 → Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) |
| 15 |
12 14
|
eqeq12d |
⊢ ( 𝑚 = 𝑀 → ( ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ↔ ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) |
| 16 |
15
|
imbi2d |
⊢ ( 𝑚 = 𝑀 → ( ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) ↔ ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) ) |
| 17 |
16
|
ralbidv |
⊢ ( 𝑚 = 𝑀 → ( ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) ) |
| 18 |
9 11 17
|
3anbi123d |
⊢ ( 𝑚 = 𝑀 → ( ( 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) ) ↔ ( 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) ) ) |
| 19 |
1 8 18
|
abfmpunirn |
⊢ ( 𝑀 ∈ ∪ ran measures ↔ ( 𝑀 ∈ V ∧ ∃ 𝑠 ∈ ∪ ran sigAlgebra ( 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) ) ) |
| 20 |
19
|
simprbi |
⊢ ( 𝑀 ∈ ∪ ran measures → ∃ 𝑠 ∈ ∪ ran sigAlgebra ( 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) ) |
| 21 |
|
fdm |
⊢ ( 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) → dom 𝑀 = 𝑠 ) |
| 22 |
21
|
3ad2ant1 |
⊢ ( ( 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) → dom 𝑀 = 𝑠 ) |
| 23 |
22
|
adantl |
⊢ ( ( 𝑠 ∈ ∪ ran sigAlgebra ∧ ( 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) ) → dom 𝑀 = 𝑠 ) |
| 24 |
|
simpl |
⊢ ( ( 𝑠 ∈ ∪ ran sigAlgebra ∧ ( 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) ) → 𝑠 ∈ ∪ ran sigAlgebra ) |
| 25 |
23 24
|
eqeltrd |
⊢ ( ( 𝑠 ∈ ∪ ran sigAlgebra ∧ ( 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) ) → dom 𝑀 ∈ ∪ ran sigAlgebra ) |
| 26 |
|
simp1 |
⊢ ( ( 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) → 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ) |
| 27 |
|
feq2 |
⊢ ( dom 𝑀 = 𝑠 → ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ↔ 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ) ) |
| 28 |
27
|
biimpar |
⊢ ( ( dom 𝑀 = 𝑠 ∧ 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ) → 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ) |
| 29 |
22 26 28
|
syl2anc |
⊢ ( ( 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) → 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ) |
| 30 |
|
simp2 |
⊢ ( ( 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) → ( 𝑀 ‘ ∅ ) = 0 ) |
| 31 |
|
simp3 |
⊢ ( ( 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) |
| 32 |
|
pweq |
⊢ ( dom 𝑀 = 𝑠 → 𝒫 dom 𝑀 = 𝒫 𝑠 ) |
| 33 |
32
|
raleqdv |
⊢ ( dom 𝑀 = 𝑠 → ( ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) ) |
| 34 |
33
|
biimpar |
⊢ ( ( dom 𝑀 = 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) |
| 35 |
22 31 34
|
syl2anc |
⊢ ( ( 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) |
| 36 |
29 30 35
|
3jca |
⊢ ( ( 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) → ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) ) |
| 37 |
36
|
adantl |
⊢ ( ( 𝑠 ∈ ∪ ran sigAlgebra ∧ ( 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) ) → ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) ) |
| 38 |
25 37
|
jca |
⊢ ( ( 𝑠 ∈ ∪ ran sigAlgebra ∧ ( 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) ) → ( dom 𝑀 ∈ ∪ ran sigAlgebra ∧ ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) ) ) |
| 39 |
38
|
rexlimiva |
⊢ ( ∃ 𝑠 ∈ ∪ ran sigAlgebra ( 𝑀 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) → ( dom 𝑀 ∈ ∪ ran sigAlgebra ∧ ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) ) ) |
| 40 |
20 39
|
syl |
⊢ ( 𝑀 ∈ ∪ ran measures → ( dom 𝑀 ∈ ∪ ran sigAlgebra ∧ ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑀 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑀 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑀 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑀 ‘ 𝑦 ) ) ) ) ) |