Metamath Proof Explorer
Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 25-Dec-2016)
|
|
Ref |
Expression |
|
Hypothesis |
esumeq2sdv.1 |
⊢ ( 𝜑 → 𝐵 = 𝐶 ) |
|
Assertion |
esumeq2sdv |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐵 = Σ* 𝑘 ∈ 𝐴 𝐶 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumeq2sdv.1 |
⊢ ( 𝜑 → 𝐵 = 𝐶 ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 = 𝐶 ) |
| 3 |
2
|
esumeq2dv |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐵 = Σ* 𝑘 ∈ 𝐴 𝐶 ) |