Metamath Proof Explorer


Theorem esumeq2sdv

Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 25-Dec-2016)

Ref Expression
Hypothesis esumeq2sdv.1 φ B = C
Assertion esumeq2sdv φ * k A B = * k A C

Proof

Step Hyp Ref Expression
1 esumeq2sdv.1 φ B = C
2 1 adantr φ k A B = C
3 2 esumeq2dv φ * k A B = * k A C