Metamath Proof Explorer


Theorem esumeq2dv

Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 2-Jan-2017)

Ref Expression
Hypothesis esumeq2dv.1 φ k A B = C
Assertion esumeq2dv φ * k A B = * k A C

Proof

Step Hyp Ref Expression
1 esumeq2dv.1 φ k A B = C
2 nfv k φ
3 1 ralrimiva φ k A B = C
4 2 3 esumeq2d φ * k A B = * k A C