Metamath Proof Explorer


Theorem esumeq2dv

Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 2-Jan-2017)

Ref Expression
Hypothesis esumeq2dv.1
|- ( ( ph /\ k e. A ) -> B = C )
Assertion esumeq2dv
|- ( ph -> sum* k e. A B = sum* k e. A C )

Proof

Step Hyp Ref Expression
1 esumeq2dv.1
 |-  ( ( ph /\ k e. A ) -> B = C )
2 nfv
 |-  F/ k ph
3 1 ralrimiva
 |-  ( ph -> A. k e. A B = C )
4 2 3 esumeq2d
 |-  ( ph -> sum* k e. A B = sum* k e. A C )