Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 2-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | esumeq2dv.1 | |- ( ( ph /\ k e. A ) -> B = C ) |
|
Assertion | esumeq2dv | |- ( ph -> sum* k e. A B = sum* k e. A C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumeq2dv.1 | |- ( ( ph /\ k e. A ) -> B = C ) |
|
2 | nfv | |- F/ k ph |
|
3 | 1 | ralrimiva | |- ( ph -> A. k e. A B = C ) |
4 | 2 3 | esumeq2d | |- ( ph -> sum* k e. A B = sum* k e. A C ) |