Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | esumeq2dv.1 | |- ( ( ph /\ k e. A ) -> B = C ) |
|
| Assertion | esumeq2dv | |- ( ph -> sum* k e. A B = sum* k e. A C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | esumeq2dv.1 | |- ( ( ph /\ k e. A ) -> B = C ) |
|
| 2 | nfv | |- F/ k ph |
|
| 3 | 1 | ralrimiva | |- ( ph -> A. k e. A B = C ) |
| 4 | 2 3 | esumeq2d | |- ( ph -> sum* k e. A B = sum* k e. A C ) |