Metamath Proof Explorer


Theorem esumeq2dv

Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 2-Jan-2017)

Ref Expression
Hypothesis esumeq2dv.1 ( ( 𝜑𝑘𝐴 ) → 𝐵 = 𝐶 )
Assertion esumeq2dv ( 𝜑 → Σ* 𝑘𝐴 𝐵 = Σ* 𝑘𝐴 𝐶 )

Proof

Step Hyp Ref Expression
1 esumeq2dv.1 ( ( 𝜑𝑘𝐴 ) → 𝐵 = 𝐶 )
2 nfv 𝑘 𝜑
3 1 ralrimiva ( 𝜑 → ∀ 𝑘𝐴 𝐵 = 𝐶 )
4 2 3 esumeq2d ( 𝜑 → Σ* 𝑘𝐴 𝐵 = Σ* 𝑘𝐴 𝐶 )