Metamath Proof Explorer
Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 2-Jan-2017)
|
|
Ref |
Expression |
|
Hypothesis |
esumeq2dv.1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 = 𝐶 ) |
|
Assertion |
esumeq2dv |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐵 = Σ* 𝑘 ∈ 𝐴 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
esumeq2dv.1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 = 𝐶 ) |
2 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
3 |
1
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 = 𝐶 ) |
4 |
2 3
|
esumeq2d |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐵 = Σ* 𝑘 ∈ 𝐴 𝐶 ) |