Metamath Proof Explorer


Theorem esumeq2d

Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 21-Sep-2016)

Ref Expression
Hypotheses esumeq2d.0 𝑘 𝜑
esumeq2d.1 ( 𝜑 → ∀ 𝑘𝐴 𝐵 = 𝐶 )
Assertion esumeq2d ( 𝜑 → Σ* 𝑘𝐴 𝐵 = Σ* 𝑘𝐴 𝐶 )

Proof

Step Hyp Ref Expression
1 esumeq2d.0 𝑘 𝜑
2 esumeq2d.1 ( 𝜑 → ∀ 𝑘𝐴 𝐵 = 𝐶 )
3 eqidd ( 𝜑𝐴 = 𝐴 )
4 2 r19.21bi ( ( 𝜑𝑘𝐴 ) → 𝐵 = 𝐶 )
5 1 3 4 esumeq12dvaf ( 𝜑 → Σ* 𝑘𝐴 𝐵 = Σ* 𝑘𝐴 𝐶 )