Metamath Proof Explorer
Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 21-Sep-2016)
|
|
Ref |
Expression |
|
Hypotheses |
esumeq2d.0 |
⊢ Ⅎ 𝑘 𝜑 |
|
|
esumeq2d.1 |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 = 𝐶 ) |
|
Assertion |
esumeq2d |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐵 = Σ* 𝑘 ∈ 𝐴 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
esumeq2d.0 |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
esumeq2d.1 |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 = 𝐶 ) |
3 |
|
eqidd |
⊢ ( 𝜑 → 𝐴 = 𝐴 ) |
4 |
2
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 = 𝐶 ) |
5 |
1 3 4
|
esumeq12dvaf |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐵 = Σ* 𝑘 ∈ 𝐴 𝐶 ) |