Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 21-Sep-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | esumeq2d.0 | |- F/ k ph |
|
esumeq2d.1 | |- ( ph -> A. k e. A B = C ) |
||
Assertion | esumeq2d | |- ( ph -> sum* k e. A B = sum* k e. A C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumeq2d.0 | |- F/ k ph |
|
2 | esumeq2d.1 | |- ( ph -> A. k e. A B = C ) |
|
3 | eqidd | |- ( ph -> A = A ) |
|
4 | 2 | r19.21bi | |- ( ( ph /\ k e. A ) -> B = C ) |
5 | 1 3 4 | esumeq12dvaf | |- ( ph -> sum* k e. A B = sum* k e. A C ) |