Metamath Proof Explorer


Theorem esumeq2d

Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 21-Sep-2016)

Ref Expression
Hypotheses esumeq2d.0
|- F/ k ph
esumeq2d.1
|- ( ph -> A. k e. A B = C )
Assertion esumeq2d
|- ( ph -> sum* k e. A B = sum* k e. A C )

Proof

Step Hyp Ref Expression
1 esumeq2d.0
 |-  F/ k ph
2 esumeq2d.1
 |-  ( ph -> A. k e. A B = C )
3 eqidd
 |-  ( ph -> A = A )
4 2 r19.21bi
 |-  ( ( ph /\ k e. A ) -> B = C )
5 1 3 4 esumeq12dvaf
 |-  ( ph -> sum* k e. A B = sum* k e. A C )