Metamath Proof Explorer


Theorem esumeq2d

Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 21-Sep-2016)

Ref Expression
Hypotheses esumeq2d.0 k φ
esumeq2d.1 φ k A B = C
Assertion esumeq2d φ * k A B = * k A C

Proof

Step Hyp Ref Expression
1 esumeq2d.0 k φ
2 esumeq2d.1 φ k A B = C
3 eqidd φ A = A
4 2 r19.21bi φ k A B = C
5 1 3 4 esumeq12dvaf φ * k A B = * k A C