Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
|- ( M e. ( measures ` S ) -> M e. _V ) |
2 |
1
|
a1i |
|- ( S e. U. ran sigAlgebra -> ( M e. ( measures ` S ) -> M e. _V ) ) |
3 |
|
simp1 |
|- ( ( M : S --> ( 0 [,] +oo ) /\ ( M ` (/) ) = 0 /\ A. x e. ~P S ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( M ` U. x ) = sum* y e. x ( M ` y ) ) ) -> M : S --> ( 0 [,] +oo ) ) |
4 |
|
ovex |
|- ( 0 [,] +oo ) e. _V |
5 |
|
fex2 |
|- ( ( M : S --> ( 0 [,] +oo ) /\ S e. U. ran sigAlgebra /\ ( 0 [,] +oo ) e. _V ) -> M e. _V ) |
6 |
5
|
3expb |
|- ( ( M : S --> ( 0 [,] +oo ) /\ ( S e. U. ran sigAlgebra /\ ( 0 [,] +oo ) e. _V ) ) -> M e. _V ) |
7 |
6
|
expcom |
|- ( ( S e. U. ran sigAlgebra /\ ( 0 [,] +oo ) e. _V ) -> ( M : S --> ( 0 [,] +oo ) -> M e. _V ) ) |
8 |
4 7
|
mpan2 |
|- ( S e. U. ran sigAlgebra -> ( M : S --> ( 0 [,] +oo ) -> M e. _V ) ) |
9 |
3 8
|
syl5 |
|- ( S e. U. ran sigAlgebra -> ( ( M : S --> ( 0 [,] +oo ) /\ ( M ` (/) ) = 0 /\ A. x e. ~P S ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( M ` U. x ) = sum* y e. x ( M ` y ) ) ) -> M e. _V ) ) |
10 |
|
df-meas |
|- measures = ( s e. U. ran sigAlgebra |-> { m | ( m : s --> ( 0 [,] +oo ) /\ ( m ` (/) ) = 0 /\ A. x e. ~P s ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( m ` U. x ) = sum* y e. x ( m ` y ) ) ) } ) |
11 |
|
vex |
|- s e. _V |
12 |
|
mapex |
|- ( ( s e. _V /\ ( 0 [,] +oo ) e. _V ) -> { m | m : s --> ( 0 [,] +oo ) } e. _V ) |
13 |
11 4 12
|
mp2an |
|- { m | m : s --> ( 0 [,] +oo ) } e. _V |
14 |
|
simp1 |
|- ( ( m : s --> ( 0 [,] +oo ) /\ ( m ` (/) ) = 0 /\ A. x e. ~P s ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( m ` U. x ) = sum* y e. x ( m ` y ) ) ) -> m : s --> ( 0 [,] +oo ) ) |
15 |
14
|
ss2abi |
|- { m | ( m : s --> ( 0 [,] +oo ) /\ ( m ` (/) ) = 0 /\ A. x e. ~P s ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( m ` U. x ) = sum* y e. x ( m ` y ) ) ) } C_ { m | m : s --> ( 0 [,] +oo ) } |
16 |
13 15
|
ssexi |
|- { m | ( m : s --> ( 0 [,] +oo ) /\ ( m ` (/) ) = 0 /\ A. x e. ~P s ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( m ` U. x ) = sum* y e. x ( m ` y ) ) ) } e. _V |
17 |
|
simpr |
|- ( ( s = S /\ m = M ) -> m = M ) |
18 |
|
simpl |
|- ( ( s = S /\ m = M ) -> s = S ) |
19 |
17 18
|
feq12d |
|- ( ( s = S /\ m = M ) -> ( m : s --> ( 0 [,] +oo ) <-> M : S --> ( 0 [,] +oo ) ) ) |
20 |
|
fveq1 |
|- ( m = M -> ( m ` (/) ) = ( M ` (/) ) ) |
21 |
20
|
eqeq1d |
|- ( m = M -> ( ( m ` (/) ) = 0 <-> ( M ` (/) ) = 0 ) ) |
22 |
21
|
adantl |
|- ( ( s = S /\ m = M ) -> ( ( m ` (/) ) = 0 <-> ( M ` (/) ) = 0 ) ) |
23 |
18
|
pweqd |
|- ( ( s = S /\ m = M ) -> ~P s = ~P S ) |
24 |
|
fveq1 |
|- ( m = M -> ( m ` U. x ) = ( M ` U. x ) ) |
25 |
|
fveq1 |
|- ( m = M -> ( m ` y ) = ( M ` y ) ) |
26 |
25
|
esumeq2sdv |
|- ( m = M -> sum* y e. x ( m ` y ) = sum* y e. x ( M ` y ) ) |
27 |
24 26
|
eqeq12d |
|- ( m = M -> ( ( m ` U. x ) = sum* y e. x ( m ` y ) <-> ( M ` U. x ) = sum* y e. x ( M ` y ) ) ) |
28 |
27
|
imbi2d |
|- ( m = M -> ( ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( m ` U. x ) = sum* y e. x ( m ` y ) ) <-> ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( M ` U. x ) = sum* y e. x ( M ` y ) ) ) ) |
29 |
28
|
adantl |
|- ( ( s = S /\ m = M ) -> ( ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( m ` U. x ) = sum* y e. x ( m ` y ) ) <-> ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( M ` U. x ) = sum* y e. x ( M ` y ) ) ) ) |
30 |
23 29
|
raleqbidv |
|- ( ( s = S /\ m = M ) -> ( A. x e. ~P s ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( m ` U. x ) = sum* y e. x ( m ` y ) ) <-> A. x e. ~P S ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( M ` U. x ) = sum* y e. x ( M ` y ) ) ) ) |
31 |
19 22 30
|
3anbi123d |
|- ( ( s = S /\ m = M ) -> ( ( m : s --> ( 0 [,] +oo ) /\ ( m ` (/) ) = 0 /\ A. x e. ~P s ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( m ` U. x ) = sum* y e. x ( m ` y ) ) ) <-> ( M : S --> ( 0 [,] +oo ) /\ ( M ` (/) ) = 0 /\ A. x e. ~P S ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( M ` U. x ) = sum* y e. x ( M ` y ) ) ) ) ) |
32 |
10 16 31
|
abfmpel |
|- ( ( S e. U. ran sigAlgebra /\ M e. _V ) -> ( M e. ( measures ` S ) <-> ( M : S --> ( 0 [,] +oo ) /\ ( M ` (/) ) = 0 /\ A. x e. ~P S ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( M ` U. x ) = sum* y e. x ( M ` y ) ) ) ) ) |
33 |
32
|
ex |
|- ( S e. U. ran sigAlgebra -> ( M e. _V -> ( M e. ( measures ` S ) <-> ( M : S --> ( 0 [,] +oo ) /\ ( M ` (/) ) = 0 /\ A. x e. ~P S ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( M ` U. x ) = sum* y e. x ( M ` y ) ) ) ) ) ) |
34 |
2 9 33
|
pm5.21ndd |
|- ( S e. U. ran sigAlgebra -> ( M e. ( measures ` S ) <-> ( M : S --> ( 0 [,] +oo ) /\ ( M ` (/) ) = 0 /\ A. x e. ~P S ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( M ` U. x ) = sum* y e. x ( M ` y ) ) ) ) ) |