Step |
Hyp |
Ref |
Expression |
1 |
|
isrnmeas |
|- ( M e. U. ran measures -> ( dom M e. U. ran sigAlgebra /\ ( M : dom M --> ( 0 [,] +oo ) /\ ( M ` (/) ) = 0 /\ A. x e. ~P dom M ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( M ` U. x ) = sum* y e. x ( M ` y ) ) ) ) ) |
2 |
1
|
simprd |
|- ( M e. U. ran measures -> ( M : dom M --> ( 0 [,] +oo ) /\ ( M ` (/) ) = 0 /\ A. x e. ~P dom M ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( M ` U. x ) = sum* y e. x ( M ` y ) ) ) ) |
3 |
|
dmmeas |
|- ( M e. U. ran measures -> dom M e. U. ran sigAlgebra ) |
4 |
|
ismeas |
|- ( dom M e. U. ran sigAlgebra -> ( M e. ( measures ` dom M ) <-> ( M : dom M --> ( 0 [,] +oo ) /\ ( M ` (/) ) = 0 /\ A. x e. ~P dom M ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( M ` U. x ) = sum* y e. x ( M ` y ) ) ) ) ) |
5 |
3 4
|
syl |
|- ( M e. U. ran measures -> ( M e. ( measures ` dom M ) <-> ( M : dom M --> ( 0 [,] +oo ) /\ ( M ` (/) ) = 0 /\ A. x e. ~P dom M ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( M ` U. x ) = sum* y e. x ( M ` y ) ) ) ) ) |
6 |
2 5
|
mpbird |
|- ( M e. U. ran measures -> M e. ( measures ` dom M ) ) |
7 |
|
df-meas |
|- measures = ( s e. U. ran sigAlgebra |-> { m | ( m : s --> ( 0 [,] +oo ) /\ ( m ` (/) ) = 0 /\ A. x e. ~P s ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( m ` U. x ) = sum* y e. x ( m ` y ) ) ) } ) |
8 |
7
|
funmpt2 |
|- Fun measures |
9 |
|
elunirn2 |
|- ( ( Fun measures /\ M e. ( measures ` dom M ) ) -> M e. U. ran measures ) |
10 |
8 9
|
mpan |
|- ( M e. ( measures ` dom M ) -> M e. U. ran measures ) |
11 |
6 10
|
impbii |
|- ( M e. U. ran measures <-> M e. ( measures ` dom M ) ) |