Metamath Proof Explorer


Theorem dmmeas

Description: The domain of a measure is a sigma-algebra. (Contributed by Thierry Arnoux, 19-Feb-2018)

Ref Expression
Assertion dmmeas
|- ( M e. U. ran measures -> dom M e. U. ran sigAlgebra )

Proof

Step Hyp Ref Expression
1 isrnmeas
 |-  ( M e. U. ran measures -> ( dom M e. U. ran sigAlgebra /\ ( M : dom M --> ( 0 [,] +oo ) /\ ( M ` (/) ) = 0 /\ A. x e. ~P dom M ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( M ` U. x ) = sum* y e. x ( M ` y ) ) ) ) )
2 1 simpld
 |-  ( M e. U. ran measures -> dom M e. U. ran sigAlgebra )