| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbfmf.1 |
⊢ ( 𝜑 → 𝑆 ∈ ∪ ran sigAlgebra ) |
| 2 |
|
mbfmf.2 |
⊢ ( 𝜑 → 𝑇 ∈ ∪ ran sigAlgebra ) |
| 3 |
|
mbfmf.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ) |
| 4 |
|
mbfmcnvima.4 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑇 ) |
| 5 |
|
imaeq2 |
⊢ ( 𝑥 = 𝐴 → ( ◡ 𝐹 “ 𝑥 ) = ( ◡ 𝐹 “ 𝐴 ) ) |
| 6 |
5
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ( ◡ 𝐹 “ 𝑥 ) ∈ 𝑆 ↔ ( ◡ 𝐹 “ 𝐴 ) ∈ 𝑆 ) ) |
| 7 |
1 2
|
ismbfm |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ↔ ( 𝐹 ∈ ( ∪ 𝑇 ↑m ∪ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑇 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝑆 ) ) ) |
| 8 |
3 7
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ∪ 𝑇 ↑m ∪ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑇 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝑆 ) ) |
| 9 |
8
|
simprd |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑇 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝑆 ) |
| 10 |
6 9 4
|
rspcdva |
⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝐴 ) ∈ 𝑆 ) |