Metamath Proof Explorer


Theorem mbfmcnvima

Description: The preimage by a measurable function is a measurable set. (Contributed by Thierry Arnoux, 23-Jan-2017)

Ref Expression
Hypotheses mbfmf.1 ( 𝜑𝑆 ran sigAlgebra )
mbfmf.2 ( 𝜑𝑇 ran sigAlgebra )
mbfmf.3 ( 𝜑𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) )
mbfmcnvima.4 ( 𝜑𝐴𝑇 )
Assertion mbfmcnvima ( 𝜑 → ( 𝐹𝐴 ) ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 mbfmf.1 ( 𝜑𝑆 ran sigAlgebra )
2 mbfmf.2 ( 𝜑𝑇 ran sigAlgebra )
3 mbfmf.3 ( 𝜑𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) )
4 mbfmcnvima.4 ( 𝜑𝐴𝑇 )
5 imaeq2 ( 𝑥 = 𝐴 → ( 𝐹𝑥 ) = ( 𝐹𝐴 ) )
6 5 eleq1d ( 𝑥 = 𝐴 → ( ( 𝐹𝑥 ) ∈ 𝑆 ↔ ( 𝐹𝐴 ) ∈ 𝑆 ) )
7 1 2 ismbfm ( 𝜑 → ( 𝐹 ∈ ( 𝑆 MblFnM 𝑇 ) ↔ ( 𝐹 ∈ ( 𝑇m 𝑆 ) ∧ ∀ 𝑥𝑇 ( 𝐹𝑥 ) ∈ 𝑆 ) ) )
8 3 7 mpbid ( 𝜑 → ( 𝐹 ∈ ( 𝑇m 𝑆 ) ∧ ∀ 𝑥𝑇 ( 𝐹𝑥 ) ∈ 𝑆 ) )
9 8 simprd ( 𝜑 → ∀ 𝑥𝑇 ( 𝐹𝑥 ) ∈ 𝑆 )
10 6 9 4 rspcdva ( 𝜑 → ( 𝐹𝐴 ) ∈ 𝑆 )