| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbfmf.1 |
|- ( ph -> S e. U. ran sigAlgebra ) |
| 2 |
|
mbfmf.2 |
|- ( ph -> T e. U. ran sigAlgebra ) |
| 3 |
|
mbfmf.3 |
|- ( ph -> F e. ( S MblFnM T ) ) |
| 4 |
|
mbfmcnvima.4 |
|- ( ph -> A e. T ) |
| 5 |
|
imaeq2 |
|- ( x = A -> ( `' F " x ) = ( `' F " A ) ) |
| 6 |
5
|
eleq1d |
|- ( x = A -> ( ( `' F " x ) e. S <-> ( `' F " A ) e. S ) ) |
| 7 |
1 2
|
ismbfm |
|- ( ph -> ( F e. ( S MblFnM T ) <-> ( F e. ( U. T ^m U. S ) /\ A. x e. T ( `' F " x ) e. S ) ) ) |
| 8 |
3 7
|
mpbid |
|- ( ph -> ( F e. ( U. T ^m U. S ) /\ A. x e. T ( `' F " x ) e. S ) ) |
| 9 |
8
|
simprd |
|- ( ph -> A. x e. T ( `' F " x ) e. S ) |
| 10 |
6 9 4
|
rspcdva |
|- ( ph -> ( `' F " A ) e. S ) |