Metamath Proof Explorer


Theorem mbfmcnvima

Description: The preimage by a measurable function is a measurable set. (Contributed by Thierry Arnoux, 23-Jan-2017)

Ref Expression
Hypotheses mbfmf.1
|- ( ph -> S e. U. ran sigAlgebra )
mbfmf.2
|- ( ph -> T e. U. ran sigAlgebra )
mbfmf.3
|- ( ph -> F e. ( S MblFnM T ) )
mbfmcnvima.4
|- ( ph -> A e. T )
Assertion mbfmcnvima
|- ( ph -> ( `' F " A ) e. S )

Proof

Step Hyp Ref Expression
1 mbfmf.1
 |-  ( ph -> S e. U. ran sigAlgebra )
2 mbfmf.2
 |-  ( ph -> T e. U. ran sigAlgebra )
3 mbfmf.3
 |-  ( ph -> F e. ( S MblFnM T ) )
4 mbfmcnvima.4
 |-  ( ph -> A e. T )
5 imaeq2
 |-  ( x = A -> ( `' F " x ) = ( `' F " A ) )
6 5 eleq1d
 |-  ( x = A -> ( ( `' F " x ) e. S <-> ( `' F " A ) e. S ) )
7 1 2 ismbfm
 |-  ( ph -> ( F e. ( S MblFnM T ) <-> ( F e. ( U. T ^m U. S ) /\ A. x e. T ( `' F " x ) e. S ) ) )
8 3 7 mpbid
 |-  ( ph -> ( F e. ( U. T ^m U. S ) /\ A. x e. T ( `' F " x ) e. S ) )
9 8 simprd
 |-  ( ph -> A. x e. T ( `' F " x ) e. S )
10 6 9 4 rspcdva
 |-  ( ph -> ( `' F " A ) e. S )