Metamath Proof Explorer


Theorem rspc

Description: Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005) (Revised by Mario Carneiro, 11-Oct-2016)

Ref Expression
Hypotheses rspc.1 x ψ
rspc.2 x = A φ ψ
Assertion rspc A B x B φ ψ

Proof

Step Hyp Ref Expression
1 rspc.1 x ψ
2 rspc.2 x = A φ ψ
3 df-ral x B φ x x B φ
4 nfcv _ x A
5 nfv x A B
6 5 1 nfim x A B ψ
7 eleq1 x = A x B A B
8 7 2 imbi12d x = A x B φ A B ψ
9 4 6 8 spcgf A B x x B φ A B ψ
10 9 pm2.43a A B x x B φ ψ
11 3 10 syl5bi A B x B φ ψ