Metamath Proof Explorer


Theorem rspcedeq1vd

Description: Restricted existential specialization, using implicit substitution. Variant of rspcedvd for equations, in which the left hand side depends on the quantified variable. (Contributed by AV, 24-Dec-2019)

Ref Expression
Hypotheses rspcedeqvd.1 φAB
rspcedeqvd.2 φx=AC=D
Assertion rspcedeq1vd φxBC=D

Proof

Step Hyp Ref Expression
1 rspcedeqvd.1 φAB
2 rspcedeqvd.2 φx=AC=D
3 2 eqeq1d φx=AC=DD=D
4 eqidd φD=D
5 1 3 4 rspcedvd φxBC=D