Metamath Proof Explorer
Description: Restricted existential specialization, using implicit substitution.
(Contributed by Glauco Siliprandi, 24-Dec-2020)
|
|
Ref |
Expression |
|
Hypotheses |
rspcef.1 |
|
|
|
rspcef.2 |
|
|
|
rspcef.3 |
|
|
|
rspcef.4 |
|
|
Assertion |
rspcef |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rspcef.1 |
|
2 |
|
rspcef.2 |
|
3 |
|
rspcef.3 |
|
4 |
|
rspcef.4 |
|
5 |
1 2 3 4
|
rspcegf |
|