Metamath Proof Explorer


Theorem rspn0OLD

Description: Obsolete version of rspn0 as of 28-Jun-2024. (Contributed by Alexander van der Vekens, 6-Sep-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion rspn0OLD AxAφφ

Proof

Step Hyp Ref Expression
1 n0 AxxA
2 nfra1 xxAφ
3 nfv xφ
4 2 3 nfim xxAφφ
5 rsp xAφxAφ
6 5 com12 xAxAφφ
7 4 6 exlimi xxAxAφφ
8 1 7 sylbi AxAφφ