Metamath Proof Explorer


Theorem rspn0OLD

Description: Obsolete version of rspn0 as of 28-Jun-2024. (Contributed by Alexander van der Vekens, 6-Sep-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion rspn0OLD A x A φ φ

Proof

Step Hyp Ref Expression
1 n0 A x x A
2 nfra1 x x A φ
3 nfv x φ
4 2 3 nfim x x A φ φ
5 rsp x A φ x A φ
6 5 com12 x A x A φ φ
7 4 6 exlimi x x A x A φ φ
8 1 7 sylbi A x A φ φ