Database
REAL AND COMPLEX NUMBERS
Words over a set
Longer string literals
s3cld
Next ⟩
s4cld
Metamath Proof Explorer
Ascii
Unicode
Theorem
s3cld
Description:
A length 3 string is a word.
(Contributed by
Mario Carneiro
, 27-Feb-2016)
Ref
Expression
Hypotheses
s2cld.1
⊢
φ
→
A
∈
X
s2cld.2
⊢
φ
→
B
∈
X
s3cld.3
⊢
φ
→
C
∈
X
Assertion
s3cld
⊢
φ
→
〈“
A
B
C
”〉
∈
Word
X
Proof
Step
Hyp
Ref
Expression
1
s2cld.1
⊢
φ
→
A
∈
X
2
s2cld.2
⊢
φ
→
B
∈
X
3
s3cld.3
⊢
φ
→
C
∈
X
4
df-s3
⊢
〈“
A
B
C
”〉
=
〈“
A
B
”〉
++
〈“
C
”〉
5
1
2
s2cld
⊢
φ
→
〈“
A
B
”〉
∈
Word
X
6
4
5
3
cats1cld
⊢
φ
→
〈“
A
B
C
”〉
∈
Word
X