Metamath Proof Explorer


Theorem sb8f

Description: Substitution of variable in universal quantifier. Version of sb8 with a disjoint variable condition, not requiring ax-10 or ax-13 . (Contributed by NM, 16-May-1993) (Revised by Wolf Lammen, 19-Jan-2023) Avoid ax-10 . (Revised by SN, 5-Dec-2024)

Ref Expression
Hypothesis sb8f.nf yφ
Assertion sb8f xφyyxφ

Proof

Step Hyp Ref Expression
1 sb8f.nf yφ
2 sb6 yxφxx=yφ
3 2 albii yyxφyxx=yφ
4 alcom yxx=yφxyx=yφ
5 sb6 xyφyy=xφ
6 1 sbf xyφφ
7 equcom y=xx=y
8 7 imbi1i y=xφx=yφ
9 8 albii yy=xφyx=yφ
10 5 6 9 3bitr3ri yx=yφφ
11 10 albii xyx=yφxφ
12 3 4 11 3bitrri xφyyxφ