Metamath Proof Explorer


Theorem sbbii

Description: Infer substitution into both sides of a logical equivalence. (Contributed by NM, 14-May-1993)

Ref Expression
Hypothesis sbbii.1 φ ψ
Assertion sbbii t x φ t x ψ

Proof

Step Hyp Ref Expression
1 sbbii.1 φ ψ
2 1 biimpi φ ψ
3 2 sbimi t x φ t x ψ
4 1 biimpri ψ φ
5 4 sbimi t x ψ t x φ
6 3 5 impbii t x φ t x ψ