Metamath Proof Explorer


Theorem sbbii

Description: Infer substitution into both sides of a logical equivalence. (Contributed by NM, 14-May-1993)

Ref Expression
Hypothesis sbbii.1 φψ
Assertion sbbii txφtxψ

Proof

Step Hyp Ref Expression
1 sbbii.1 φψ
2 1 biimpi φψ
3 2 sbimi txφtxψ
4 1 biimpri ψφ
5 4 sbimi txψtxφ
6 3 5 impbii txφtxψ