Metamath Proof Explorer


Theorem sbc2ie

Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008) (Revised by Mario Carneiro, 19-Dec-2013) (Proof shortened by Gino Giotto, 12-Oct-2024)

Ref Expression
Hypotheses sbc2ie.1 AV
sbc2ie.2 BV
sbc2ie.3 x=Ay=Bφψ
Assertion sbc2ie [˙A/x]˙[˙B/y]˙φψ

Proof

Step Hyp Ref Expression
1 sbc2ie.1 AV
2 sbc2ie.2 BV
3 sbc2ie.3 x=Ay=Bφψ
4 2 a1i x=ABV
5 4 3 sbcied x=A[˙B/y]˙φψ
6 1 5 sbcie [˙A/x]˙[˙B/y]˙φψ