Metamath Proof Explorer


Theorem sbc2ieOLD

Description: Obsolete version of sbc2ie as of 12-Oct-2024. (Contributed by NM, 16-Dec-2008) (Revised by Mario Carneiro, 19-Dec-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses sbc2ieOLD.1 AV
sbc2ieOLD.2 BV
sbc2ieOLD.3 x=Ay=Bφψ
Assertion sbc2ieOLD [˙A/x]˙[˙B/y]˙φψ

Proof

Step Hyp Ref Expression
1 sbc2ieOLD.1 AV
2 sbc2ieOLD.2 BV
3 sbc2ieOLD.3 x=Ay=Bφψ
4 nfv xψ
5 nfv yψ
6 2 nfth xBV
7 4 5 6 3 sbc2iegf AVBV[˙A/x]˙[˙B/y]˙φψ
8 1 2 7 mp2an [˙A/x]˙[˙B/y]˙φψ