Metamath Proof Explorer


Theorem sbc2iegf

Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Dec-2013)

Ref Expression
Hypotheses sbc2iegf.1 xψ
sbc2iegf.2 yψ
sbc2iegf.3 xBW
sbc2iegf.4 x=Ay=Bφψ
Assertion sbc2iegf AVBW[˙A/x]˙[˙B/y]˙φψ

Proof

Step Hyp Ref Expression
1 sbc2iegf.1 xψ
2 sbc2iegf.2 yψ
3 sbc2iegf.3 xBW
4 sbc2iegf.4 x=Ay=Bφψ
5 simpl AVBWAV
6 simpl BWx=ABW
7 4 adantll BWx=Ay=Bφψ
8 nfv yBWx=A
9 2 a1i BWx=Ayψ
10 6 7 8 9 sbciedf BWx=A[˙B/y]˙φψ
11 10 adantll AVBWx=A[˙B/y]˙φψ
12 nfv xAV
13 12 3 nfan xAVBW
14 1 a1i AVBWxψ
15 5 11 13 14 sbciedf AVBW[˙A/x]˙[˙B/y]˙φψ