| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbc2iegf.1 |
⊢ Ⅎ 𝑥 𝜓 |
| 2 |
|
sbc2iegf.2 |
⊢ Ⅎ 𝑦 𝜓 |
| 3 |
|
sbc2iegf.3 |
⊢ Ⅎ 𝑥 𝐵 ∈ 𝑊 |
| 4 |
|
sbc2iegf.4 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) |
| 5 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝐴 ∈ 𝑉 ) |
| 6 |
|
simpl |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴 ) → 𝐵 ∈ 𝑊 ) |
| 7 |
4
|
adantll |
⊢ ( ( ( 𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) |
| 8 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴 ) |
| 9 |
2
|
a1i |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴 ) → Ⅎ 𝑦 𝜓 ) |
| 10 |
6 7 8 9
|
sbciedf |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴 ) → ( [ 𝐵 / 𝑦 ] 𝜑 ↔ 𝜓 ) ) |
| 11 |
10
|
adantll |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑥 = 𝐴 ) → ( [ 𝐵 / 𝑦 ] 𝜑 ↔ 𝜓 ) ) |
| 12 |
|
nfv |
⊢ Ⅎ 𝑥 𝐴 ∈ 𝑉 |
| 13 |
12 3
|
nfan |
⊢ Ⅎ 𝑥 ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) |
| 14 |
1
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → Ⅎ 𝑥 𝜓 ) |
| 15 |
5 11 13 14
|
sbciedf |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ 𝜓 ) ) |