Step |
Hyp |
Ref |
Expression |
1 |
|
sbc2iegf.1 |
|- F/ x ps |
2 |
|
sbc2iegf.2 |
|- F/ y ps |
3 |
|
sbc2iegf.3 |
|- F/ x B e. W |
4 |
|
sbc2iegf.4 |
|- ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) |
5 |
|
simpl |
|- ( ( A e. V /\ B e. W ) -> A e. V ) |
6 |
|
simpl |
|- ( ( B e. W /\ x = A ) -> B e. W ) |
7 |
4
|
adantll |
|- ( ( ( B e. W /\ x = A ) /\ y = B ) -> ( ph <-> ps ) ) |
8 |
|
nfv |
|- F/ y ( B e. W /\ x = A ) |
9 |
2
|
a1i |
|- ( ( B e. W /\ x = A ) -> F/ y ps ) |
10 |
6 7 8 9
|
sbciedf |
|- ( ( B e. W /\ x = A ) -> ( [. B / y ]. ph <-> ps ) ) |
11 |
10
|
adantll |
|- ( ( ( A e. V /\ B e. W ) /\ x = A ) -> ( [. B / y ]. ph <-> ps ) ) |
12 |
|
nfv |
|- F/ x A e. V |
13 |
12 3
|
nfan |
|- F/ x ( A e. V /\ B e. W ) |
14 |
1
|
a1i |
|- ( ( A e. V /\ B e. W ) -> F/ x ps ) |
15 |
5 11 13 14
|
sbciedf |
|- ( ( A e. V /\ B e. W ) -> ( [. A / x ]. [. B / y ]. ph <-> ps ) ) |