Metamath Proof Explorer


Theorem sbc3ie

Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Jun-2014) (Revised by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses sbc3ie.1 AV
sbc3ie.2 BV
sbc3ie.3 CV
sbc3ie.4 x=Ay=Bz=Cφψ
Assertion sbc3ie [˙A/x]˙[˙B/y]˙[˙C/z]˙φψ

Proof

Step Hyp Ref Expression
1 sbc3ie.1 AV
2 sbc3ie.2 BV
3 sbc3ie.3 CV
4 sbc3ie.4 x=Ay=Bz=Cφψ
5 3 a1i x=Ay=BCV
6 4 3expa x=Ay=Bz=Cφψ
7 5 6 sbcied x=Ay=B[˙C/z]˙φψ
8 1 2 7 sbc2ie [˙A/x]˙[˙B/y]˙[˙C/z]˙φψ