Metamath Proof Explorer


Theorem sbc6

Description: An equivalence for class substitution. (Contributed by NM, 23-Aug-1993) (Proof shortened by Eric Schmidt, 17-Jan-2007)

Ref Expression
Hypothesis sbc6.1 AV
Assertion sbc6 [˙A/x]˙φxx=Aφ

Proof

Step Hyp Ref Expression
1 sbc6.1 AV
2 sbc6g AV[˙A/x]˙φxx=Aφ
3 1 2 ax-mp [˙A/x]˙φxx=Aφ