Metamath Proof Explorer


Theorem sbcbi1

Description: Distribution of class substitution over biconditional. One direction of sbcbig that holds for proper classes. (Contributed by NM, 17-Aug-2018)

Ref Expression
Assertion sbcbi1 [˙A/x]˙φψ[˙A/x]˙φ[˙A/x]˙ψ

Proof

Step Hyp Ref Expression
1 sbcex [˙A/x]˙φψAV
2 sbcbig AV[˙A/x]˙φψ[˙A/x]˙φ[˙A/x]˙ψ
3 2 biimpd AV[˙A/x]˙φψ[˙A/x]˙φ[˙A/x]˙ψ
4 1 3 mpcom [˙A/x]˙φψ[˙A/x]˙φ[˙A/x]˙ψ