Metamath Proof Explorer


Theorem sbcbii

Description: Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005)

Ref Expression
Hypothesis sbcbii.1 φψ
Assertion sbcbii [˙A/x]˙φ[˙A/x]˙ψ

Proof

Step Hyp Ref Expression
1 sbcbii.1 φψ
2 1 a1i φψ
3 2 sbcbidv [˙A/x]˙φ[˙A/x]˙ψ
4 3 mptru [˙A/x]˙φ[˙A/x]˙ψ